Assessment of Allelopathic Activity of Arachis pintoi Krapov. & W.C. Greg as a Potential Source of Natural Herbicide for Paddy Rice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material Collection
2.2. Tested Plants and Laboratory Bioassays
2.3. Greenhouse Experiments
2.4. Field Trials
2.4.1. Evaluation of Allelopathic Potential of A. pintoi against the Growth of Echinochloa crus-galli
2.4.2. Evaluation of Allelopathic Potential of A. pintoi against the Growth of Natural Paddy Weeds
2.5. Extracts from Arachis pintoi Powders
2.6. Determination of Total Phenolic and Flavonoid Contents
2.7. Inhibitory Effects of Different Extracts of Arachis pintoi against the Growth of the Tested Plants
2.8. Identification of Allelochemicals by GC-MS
2.9. Statistical Analysis
3. Results
3.1. Inhibitory Effects of Arachis pintoi against the Growth of Tested Plants
3.2. Inhibitory Effects of Arachis pintoi against the Growth of Echinochloa crus-galli under Greenhouse Conditions
3.3. Inhibitory Effects of Arachis pintoi against Echinochloa crus-galli in Paddy Field Condition
3.4. Inhibitory Effects of Arachis pintoi against the Natural Paddy Weeds and Rice Yield under Field Condition
3.5. Inhibitory Effects of Different Extracts of Arachis pintoi on the Growth of the Tested Plants
3.6. Determination of Total Phenolic and Flavonoid Contents of the Different Extracts from Arachis pintoi
3.7. Gas Chromatography–Mass Spectrometry (GC-MS) Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vyvyan, J.R. Allelochemicals as leads for new herbicides and agrochemicals. Tetrahedron 2002, 58, 1631–1646. [Google Scholar] [CrossRef]
- Anaya, A.L. Allelopathic organisms and molecules: Promising bio-regulators for the control of plant diseases, weeds, and other pests. In Allelochemicals: Biological Control of Plant Pathogens and Diseases; Inderjit, Mukerji, K.G., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 31–79. [Google Scholar]
- Singh, H.P.; Batish, D.R.; Kaur, S.; Kohli, R. Phytotoxic interference of Ageratum conyzoides with wheat (Triticum aestivum). J. Agron. Crop. Sci. 2003, 189, 341–346. [Google Scholar] [CrossRef]
- Khanh, T.D.; Linh, L.H.; Linh, T.H.; Quan, N.T.; Cuong, D.M.; Hien, V.T.T.; Ham, L.H.; Xuan, T.D. Integration of Allelopathy to Control Weeds in Rice. In Herbicides—Current Research and Case Studies in Use; Andrew, P., Jessica, K., Eds.; IntechOpen: London, UK, 2013; p. 664. [Google Scholar]
- Mandava, N.B. CRC Handbook of natural herbicides: Methods, volume I theory, practice and detection. In CRC Series in Naturally Occurring Pesticides; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Boca Raton, FL, USA, 2018. [Google Scholar]
- Chauhan, S.B. Biology and Management of Problematic Crop Weed Species; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar] [CrossRef]
- Khanh, T.D.; Chung, I.M.; Tawata, S.; Xuan, T.D. Weed suppression by Passiflora edulis and its potential allelochemicals. Weed Res. 2006, 46, 296–303. [Google Scholar] [CrossRef]
- ILS-Institute of Legislation Study, Vietnam. Some Issues on Plant Protection and Quarantine; Institute for Legislative Studies: Hanoi, Vietnam, 2013. [Google Scholar]
- Thanh, P.L.; Tran, T.A. Highly Hazardous Pesticides in Vietnam: A Situational Analysis. Report, 1-38. An Giang University/University of Economics Ho Chi Minh: International Pollutants Elimination Network-IPEB for a Toxics-Free Future, 2020. Available online: https://ipen.org/documents/highly-hazardous-pesticides-vietnam-situational-analysis (accessed on 5 January 2023).
- Khanh, T.D.; Chung, I.M.; Xuan, T.D.; Tawata, S. The exploitation of crop allelopathy in sustainable agricultural production. J. Agron. Crop. Sci. 2005, 191, 172–184. [Google Scholar] [CrossRef]
- Khanh, T.D.; Chung, I.M.; Tawata, S.; Xuan, T.D. Allelopathy for weed management in sustainable agriculture. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2007, 2, 034. [Google Scholar] [CrossRef]
- Kubiak, A.; Wolna-Maruwka, A.; Niewiadomska, A.; Pilarska, A.A. The Problem of Weed Infestation of Agricultural Plantations vs. the Assumptions of the European Biodiversity Strategy. Agronomy 2022, 12, 1808. [Google Scholar] [CrossRef]
- Marone, P.G. Status of the biopesticide market and prospects for new bioherbicides. Pest Manag. Sci. 2023. first published. [Google Scholar] [CrossRef]
- Khanh, T.D.; Anh, L.H.; Nghia, L.T.; Huu Trung, K.; Bich Hien, P.; Minh Trung, D.; Dang Xuan, T. Allelopathic Responses of Rice Seedlings under Some Different Stresses. Plants 2018, 7, 40. [Google Scholar] [CrossRef] [Green Version]
- Latif, S.; Chiapusio, G.; Weston, L.A. Allelopathy and the role of allelochemicals in plant defences. In Advances in Botanical Research, How Plants Communicate with Their Biotic Environment; Becard, G., Ed.; Academic Press: Cambridge, MA, USA, 2017; Volume 82, p. 384. [Google Scholar]
- Putnam, A.R.; Tang, C.S. The Science of Allelopathy; John Wiley & Sons: New York, NY, USA, 1986. [Google Scholar]
- Xuan, T.D.; Shinkichi, T.; Khanh, T.D.; Chung, I.M. Biological control of weeds and plant pathogens in paddy rice by exploiting plant allelopathy: An overview. Crop Prot. 2005, 24, 197–206. [Google Scholar] [CrossRef]
- Khanh, T.D.; Elzaawely, A.A.; Chung, I.M.; Ahn, J.K.; Tawata, S.; Xuan, T.D. Role of allelochemicals for weed management in rice. Allelopathy. J. 2007, 19, 85–96. [Google Scholar]
- Chou, C.H. Allelopathy and sustainable agriculture. In Allelopathy: Organisms, Processes and Application; ACS Symposium Series No. 582; Inderjit, Dakshini, K.M.M., Einhellig, F.A., Eds.; American Chemistry Society: Washington, DC, USA, 1995; pp. 211–223. [Google Scholar]
- Hoang, V.; Loan, N.; Tam, B.; Thiem, T. Effects of Fertilization Ratios on the Growth of Pinto Peanut (Arachis Pintoi) under Drought Stress Conditions. Vietnam. J. Agric. Sci. 2019, 1, 249–260. [Google Scholar]
- Carvalho, M.A.; Quesenberry, K.H. Morphological characterization of the USA Arachis pintoi Krap. and Greg. collection. Plant Syst. Evol. 2009, 277, 1–11. [Google Scholar] [CrossRef]
- de Sousa-Machado, I.B.; Felippe, T.; Garcia, R.; Pacheco, G.; Moreira, D.; Mansur, E. Total phenolics, resveratrol content and antioxidant activity of seeds and calluses of pinto peanut (Arachis pintoi Krapow.& W.C.Greg.). Plant Cell Tissue Organ Cult. 2018, 134, 491–502. [Google Scholar]
- Belz, R.G. Allelopathy in crop/weed interactions—An update. Pest Manag. Sci. 2007, 63, 308–326. [Google Scholar] [CrossRef] [PubMed]
- Solis, R.; Pezo, M.; Arévalo, L.; Lao, C.; Alegre, J.; Pérez, K. Evaluation of leguminous species as cover crops associated with sacha inchi. Pesqui. Agropecuária Trop. 2019, 49, e58011. [Google Scholar] [CrossRef]
- Sumiahadi, A.; Chozin, M.A.; Guntoro, D. Effectiveness of Arachis pintoi Karp. & Greg. As Biomulch to Control Weeds on Maize Cultivation. Int. J. Innov. Approach Agric. Res. 2019, 3, 680–689. [Google Scholar]
- Karimmojeni, H.; Rezaei, M.; Tseng, T.-M.; Mastinu, A. Effects of Metribuzin Herbicide on Some Morpho-Physiological Characteristics of Two Echinacea Species. Horticulturae 2022, 8, 169. [Google Scholar] [CrossRef]
- Xuan, T.D.; Tsuzuki, E.; Tawata, S.; Khanh, T.D. Method to determine allelopathic potential of crop plants for weed control. Allelopath. J. 2004, 13, 149–164. [Google Scholar]
- Fujii, Y.; Parvez, S.S.; Parvez, M.M.; Ohmae, Y.; Iida, O. Screening of 239 medicinal plant species for allelopathic activity using the sandwich method. Weed Biol. Manag. 2003, 3, 233–241. [Google Scholar] [CrossRef]
- Thang, P.T.; Vien, N.V.; Trung, K.H.; Khanh, T.D. Allelopathic Potential of Boehmeria nivea (L.) Gaudich. against the Growth of Barnyardgrass (Echinochloa crus-galli) in Laboratory and Nethouse Conditions. Vietnam. J. Agric. Sci. 2019, 17, 891–900. [Google Scholar]
- Thang, P.T.; Vien, N.V.; Nhung, N.T.; Linh, N.H.T.; Khanh, T.D. Evaluation of the Allelopathic Potential of Love Grass (Chrysopogon aciculatus (Retz.) Trin.) Among the Different Screening Conditions. Vietnam. J. Agric. Sci. 2022, 20, 1361–1373. [Google Scholar]
- Khanh, T.D.; Hong, N.H.; Xuan, T.D.; Chung, I.M. Paddy weed control by medicinal and leguminous plants from Southeast Asia. Crop Prot. 2005, 24, 421–431. [Google Scholar] [CrossRef]
- Khanh, T.D.; Cong, L.C.; Xuan, T.D.; Lee, S.J.; Kong, D.S.; Chung, I.M. Weed-Suppressing Potential of Dodder (Cuscuta hygrophilae) and its Phytotoxic Constituents. Weed Sci. 2008, 56, 119–127. [Google Scholar] [CrossRef]
- Hong, N.H.; Xuan, T.D.; Eji, T.; Khanh, T.D. Paddy weed control by higher plants from Southeast Asia. Crop Prot. 2004, 23, 255–261. [Google Scholar] [CrossRef]
- Quan, N.V.; Xuan, T.D.; Tran, H.-D.; Thuy, N.T.D.; Trang, L.T.; Huong, C.T.; Andriana, Y.; Tuyen, P.T. Antioxidant, α-amylase and α-glucosidase inhibitory activities and potential constituents of Canarium tramdenum Bark. Molecules 2019, 24, 605. [Google Scholar] [CrossRef] [Green Version]
- Medini, F.; Fellah, H.; Ksouri, R.; Abdelly, C. Total phenolic, flavonoid and tannin contents and antioxidant and antimicrobial activities of organic extracts of shoots of the plant Limonium delicatulum. J. Taibah Univ. Sci. 2014, 8, 216–224. [Google Scholar] [CrossRef] [Green Version]
- Bueno-Costa, F.M.; Zambiazi, R.C.; Bohmer, B.W.; Chaves, F.C.; DaSilva, W.P.; Zanusso, J.T.; Dutra, I. Antibacterial and antioxidant activity of honeys from the state of Rio Grande do Sul, Brazil. LWT Food Sci. Technol. 2016, 65, 333–340. [Google Scholar] [CrossRef] [Green Version]
- Minh, T.N.; Xuan, T.D.; Tran, H.-D.; Van, T.M.; Andriana, Y.; Khanh, T.D.; Quan, N.V.; Ahmad, A. Isolation and Purification of Bioactive Compounds from the Stem Bark of Jatropha podagrica. Molecules 2019, 24, 889. [Google Scholar] [CrossRef] [Green Version]
- Quan, N.V.; Xuan, T.D.; Tran, H.-D.; Dieu Thuy, N.T. Inhibitory Activities of Momilactones A, B, E, and 7-Ketostigmasterol Isolated from Rice Husk on Paddy and Invasive Weeds. Plants 2019, 8, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dayan, F.E.; Duke, S.O. Natural compounds as next-generation herbicides. Plant Physiol. 2014, 166, 1090–1105. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.; Ahmad-Hamdani, M.S.; Rosli, A.M.; Hamdan, H. Bioherbicides: An Eco-Friendly Tool for Sustainable Weed Management. Plants 2021, 10, 1212. [Google Scholar] [CrossRef] [PubMed]
- Kohli, R.K.; Batish, D.; Singh, H.P. Allelopathy and its implications in agroecosystems. J. Crop Prod. 1998, 1, 169–202. [Google Scholar] [CrossRef]
- Cordeau, S.; Triolet, M.; Wayman, S.; Steinberg, C.; Guillemin, J.P. Bioherbicides: Dead in the water? A review of the existing products for integrated weed management. Crop Prot. 2016, 87, 44–49. [Google Scholar]
- Verdeguer, M.; Sánchez-Moreiras, A.M.; Araniti, F. Phytotoxic effects and mechanism of action of essential oils and terpenoids. Plants 2020, 9, 1571. [Google Scholar] [CrossRef] [PubMed]
- Khanh, T.D.; Xuan, T.D.; Chung, I.M. Rice allelopathy and possibility for weed management. Ann. Appl. Biol. 2007, 151, 325–339. [Google Scholar] [CrossRef]
- Morikawa, C.I.O.; Miyaura, R.; Figueroa, M.L.T.; Salgado, E.L.R.; Fujii, Y. Screening of 170 Peruvian plant species for allelopathic activity by using the Sandwich method. Weed Biol. Manag. 2012, 12, 1–11. [Google Scholar] [CrossRef]
- Khamseekhiew, B.; Liang, J.B.; Wong, C.C.; Jalan, Z.A. Ruminal and intestinal digestibility of some tropical legume forages. Asian-Australas. J. Anim. Sci. 2001, 14, 321–325. [Google Scholar] [CrossRef]
- Rao, I.M.; Kerridge, P.C. Mineral nutrition of forage Arachis. In Biology and Agronomy of Forage Arachis; Kerridge, P.C., Hardy, B., Eds.; Centro Internacional de Agricultura Tropical: Valle del Cauca, Colombia, 1993; pp. 71–83. [Google Scholar]
- Monteles, F.; Melo, T.A.; Lima Filho, F.; Sousa, R.; Silva, M.; Serra, I. Efeito alelopático dos extratos aquosos de amendoim forrageiro (Arachis pintoi) e da erva-de-touro (Tridax procumbens) sobre a germinação de sementes de tomate e pimentão. Cad. De Agroecol. 2011, 6, 1–5. [Google Scholar]
- Phan, K.L.; Phong, N.H.T.; Nguyen, L.V.; Ho, L.T. Allelopathy and allelochemical quantitative analysis in Pito peanut (Arachis pintoi). J. Viet. Sci. Tech. 2021, 63, 41–46. [Google Scholar]
- Anh, L.H.; Quan, V.N.; Nghia, L.T.; Xuan, T.D. Phenolic allelochemicals: Achievements, limitations, and prospective approaches in weed management. Weed Biol. Manag. 2021, 21, 37–67. [Google Scholar]
- Bangi, J.C.; Cosico, W. Corn yield and soil properties in Cotabato as influenced by the living mulch Arachis pintoi. Philipp. J. Crop Sci. 2007, 32, 58–68. [Google Scholar]
- Chozin, A.M.; Kartika, J.G.; Baharudin, D.R. The use of Arachis pintoi as biomulch in tomato cultivation. J. Hort. Indones. 2014, 4, 168–174. [Google Scholar]
- Chozin, M.A.; Nuryana, F.I.; Guntoro, D.; Sumiahadi, A.; Badriyah, R.N.; Wibowo, A.P. Potency of Arachis pintoi Krap.& Greg.as biomulch in the tropical upland agriculture. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2017; Volume 196, p. 012011. [Google Scholar]
- Kong, C.-H.; Xuan, T.D.; Khanh, T.D.; Tran, H.-D.; Trung, N.T. Allelochemicals and Signaling Chemicals in Plants. Molecules 2019, 24, 2737. [Google Scholar] [CrossRef] [Green Version]
- Anwar, T.; Qureshi, H.; Mahnashi, M.H.; Kabir, F.; Parveen, N.; Ahmed, D.; Afzal, U.; Batool, S.; Awais, M.; Alyami, S.A.; et al. Bioherbicidal ability and weed management of allelopathic methyl esters from Lantana camara. Saudi J. Biol. Sci. 2021, 28, 4365–4374. [Google Scholar] [CrossRef] [PubMed]
- Angelini, P.; Tirillini, B.; Properzi, A.; Rol, C.; Venanzoni, R. Identification and bioactivity of the growth inhibitors in Tuber spp. methanolic extracts. Plant Biosyst. 2015, 149, 1000–1009. [Google Scholar] [CrossRef]
- Falquet, B.; Gfeller, A.; Pourcelot, M.; Tschuy, F.; Wirth, J. Weed suppression by common buckwheat: A review. Environ. Control. Biol. 2015, 53, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Shen, S.; Ma, G.; Xu, G.; Li, D.; Jin, G.; Yang, S.; Clements, D.R.; Chen, A.; Wen, L.; Zhang, F.; et al. Allelochemicals identified from sweet potato (Ipomoea batatas) and their allelopathic effects on invasive alien plants. Front. Plant Sci. 2022, 13, 823947. [Google Scholar] [CrossRef]
- Kpoviessia, D.S.S.; Gdaguidia, F.A.; Gbenoua, J.D.; Accrombessia, G.C.; Haddadb, M.; Moudachiroua, M.; Quetin-Leclercqb, J. Allelopathic effects on cowpea (Vigna unguiculata (L.) Walp) plant and cytotoxic activities of sterols and triterpene isolated from Justicia anselliana (NEES) T. Anders. Electron. J. Nat. Sub. 2006, 1, 12–19. [Google Scholar]
- Gumilar, R.A.; Wijayanto, N.; Wulandari, A.S. Effect of Azadirachta excelsa and Melia azedarach extracts on soybean germination. Nus. Biosci. 2017, 9, 346–351. [Google Scholar] [CrossRef] [Green Version]
- Pooja, V.; Blaise, D.; Annie, J.S.; Manikandan, A. Allelopathic potential and allelochemicals indifferent intercrops for weed management inrainfed cotton. Curr. Sci. 2021, 120, 1035–1039. [Google Scholar]
- Anh, L.H.; Quan, N.V.; Lam, V.Q.; Iuchi, Y.; Takami, A.; Teschke, R.; Xuan, T.D. Antioxidant, anti-tyrosinase, anti-α-amylase, and cytotoxic potentials of the invasive weed Andropogon virginicus. Plants 2020, 10, 69. [Google Scholar] [CrossRef] [PubMed]
- Anh, L.H.; Xuan, T.D.; Thuy, N.T.D.; Quan, N.V.; Trang, L.T. Antioxidant and α-amylase inhibitory activities and phytocompounds of Clausena indica Fruits. Medicines 2020, 7, 10. [Google Scholar]
Dose (g/L) | Germination (%) | Shoot Length (cm) | Root Length (cm) | Fresh Weight (g) | Dry Weight (g) | AI (%) |
---|---|---|---|---|---|---|
Echinochloa crus-galli | ||||||
50 | 15.7 a ± 0.883 (12.9) | 3.71 d ± 0.299 (53.7) | 0.38 c ± 0.023 (88.3) | 0.15 d ± 0.006 (58.3) | 0.0152 d ± 0.001 (62.3) | 55.1 |
25 | 19.3 a ± 0.667 (−7.2) | 5.39 d ± 0.201 (32.8) | 0.49 c ± 0.026 (84.9) | 0.21 c ± 0.004 (41.7) | 0.0341 c ± 0.0009 (15.4) | 33.5 |
12.5 | 18.7 a ± 1.335 (−3.9) | 7.06 b ± 0.083 (12.0) | 0.77 c ± 0.026 (76.2) | 0.27 bc ± 0.005 (25.0) | 0.0419 ab ± 0.0006 (−4.0) | 21.1 |
6.2 | 19.0 a ± 0.578 (−5.6) | 8.73 a ± 0.2 (−8.8) | 2.1 b ± 0.006 (35.2) | 0.31 ab ± 0.005 (13.9) | 0.048 a ± 0.002 (−19.1) | 3.1 |
Control | 18.0 a ± 1.001 (0.0) | 8.021 ab ± 0.224 (0.0) | 3.24 a ± 0.2 (0.0) | 0.36 a ± 0.028 (0.0) | 0.0403 bc ± 0.002 (0.0) | |
LSD(0.05) | 2.93 | 0.67 | 0.28 | 0.41 | 0.48 | |
CV(%) | 8.9 | 5.6 | 11.3 | 8.6 | 7.4 | |
Oryza sativa | ||||||
50 | 6.0 b ± 1.529 (66.1) | 2.34 d ± 0.158 (69.7) | 0.95 c ± 0.041 (89.3) | 0.14 d ± 0.02 (89.2) | 0.084 d ± 0.005 (71.1) | 77.1 |
25 | 15.7 a ± 1.669 (11.3) | 5.17 c ± 0.057 (33.0) | 1.41 c ± 0.03 (84.2) | 0.72 c ± 0.021 (44.6) | 0.205 c ± 0.004 (29.6) | 40.5 |
12.5 | 17.7 a ± 0.883 (0.0) | 6.78 b ± 0.133 (12.2) | 4.76 b ± 0.073 (46.5) | 1.35 ab ± 0.023 (−3.8) | 0.275 b ± 0.005 (5.5) | 12.1 |
6.2 | 18.7 a ± 0.334 (−5.6) | 7.19 ab ± 0.044 (6.9) | 8.12 a ± 0.027 (9.0) | 1.49 a ± 0.015 (−14.6) | 0.344 a ± 0.012 (−18.2) | −4.5 |
Control | 17.7 a ± 0.883 (0.0) | 7.72 a ± 0.273 (0.0) | 8.92 a ± 0.449 (0.0) | 1.30 b ± 0.072 (0.0) | 0.291 b ± 0.004 (0.0) | |
LSD(0.05) | 3.66 | 0.49 | 0.64 | 0.11 | 0.21 | |
CV(%) | 13.3 | 4.6 | 7.4 | 6.4 | 4.9 | |
Vigna radiata | ||||||
50 | 16.3 a ± 2.188 (15.5) | 5.00 d ± 0.185 (69.7) | 1.70 e ± 0.044 (72.9) | 2.69 c ± 0.079 (71.1) | 0.278 c ± 0.028 (71.4) | 60.1 |
25 | 17.3 a ± 2.188 (10.4) | 7.27 c ± 0.56 (56.0) | 2.82 d ± 0.234 (55.1) | 5.21 b ± 0.277 (44.0) | 0.565 b ± 0.037 (41.9) | 41.5 |
12.5 | 17.7 a ± 1.455 (8.3) | 11.81 b ± 0.492 (28.5) | 4.62 c ± 0.081 (26.4) | 6.26 b ± 0.316 (32.7) | 0.665 b ± 0.031 (31.7) | 25.5 |
6.2 | 18.3 a ± 0.883 (5.2) | 15.64 a ± 0.459 (5.3) | 5.44 b ± 0.248 (13.4) | 8.86 a ± 0.334 (4.7) | 1.005 a ± 0.062 (−3.3) | 5.1 |
Control | 19.3 a ± 0.334 (0.0) | 16.52 a ± 0.321 (0.0) | 6.28 a ± 0.143 (0.0) | 9.30 a ± 0.178 (0.0) | 0.973 a ± 0.017 (0.0) | |
LSD(0.05) | 4.99 | 1.33 | 0.53 | 0.8 | 0.11 | |
CV(%) | 15.4 | 6.5 | 7 | 6.8 | 9.4 |
Dose | Germination | Shoot Length | Fresh Weight | Dry Weight | AI |
---|---|---|---|---|---|
(g/m2) | (%) | (cm) | (g) | (g) | (%) |
200 | 7.7 b ± 1.203 (60.9) | 6.56 c ± 0.475 (53.2) | 0.464 c ± 0.04 (71.8) | 0.062 b ± 0.004 (67.5) | 63.4 |
150 | 11.3 b ± 1.766 (42.6) | 7.24 bc ± 0.796 (48.3) | 0.552 c ± 0.063 (66.5) | 0.087 b ± 0.007 (54.5) | 53 |
100 | 10.7 b ± 2.03 (45.7) | 10.96 ab ± 0.332 (21.8) | 1.125 b ± 0.081 (31.7) | 0.115 b ± 0.011 (39.8) | 34.7 |
50 | 10.3 b ± 1.455 (47.7) | 12.58 a ± 1.348 (10.2) | 1.509 a ± 0.081 (8.3) | 0.190 a ± 0.018 (0.5) | 16.7 |
Control | 19.7 a ± 0.334 (0.0) | 14.01 a ± 1.166 (0.0) | 1.646 a ± 0.095 (0.0) | 0.191 a ± 0.015 (0.0) | |
LSD(0.05) | 4.65 | 2.86 | 0.21 | ||
CV(%) | 21.4 | 15.3 | 11.1 |
Dose | Shoot Length | Fresh Weight | Dry Weight | AI |
---|---|---|---|---|
(g/m2) | (cm) | (g) | (g) | (%) |
200 | 41.98 b ± 5.489 (40.6) | 70.43 c ± 6.649 (44.7) | 12.07 b ± 1.547 (46.4) | 43.9 |
150 | 56.11 ab ± 6.643 (20.6) | 87.80 bc ± 11.654 (31.1) | 16.80 ab ± 2.841 (25.4) | 25.7 |
100 | 62.50 ab ± 7.103 (11.6) | 114.57 ab ± 1.214 (10.1) | 20.10 ab ± 0.625 (10.8) | 10.8 |
50 | 69.86 a ± 2.352 (1.2) | 114.20 ab ± 7.242 (10.4) | 23.90 a ± 2.918 (−6.1) | 1.8 |
Control | 70.70 a ± 2.166 (0.0) | 127.47 a ± 6.12 (0.0) | 22.53 a ± 0.339 (0.0) | |
LSD(0.05) | 16.3 | 23.1 | 6.2 | |
CV(%) | 14.9 | 12.4 | 17.9 |
Treatment (g/m2) | Inhibition (%) Compared with the Control | |
---|---|---|
Dry Weight (g) | Rice Yield (g/m2) | |
200 | 13.71 c ± 2.0 (43.1) | 520.4 a ± 15.3 (−35.1) |
150 | 15.86 bc ± 2.21 (34.2) | 487.1 ab ± 22.9 (−26.5) |
100 | 18.82 bc ± 1.33 (21.9) | 459.0 b ± 18.3 (−19.2) |
50 | 20.06 ab ± 3.55 (14.5) | 396.6 c ± 10.0 (−3.00) |
Hand-weeding | 2.33 d ± 0.49 (90.3) | 462.7 b ± 11.2 (−20.2) |
Herbicide | 2.13 d ± 0.61 (91.2) | 488.5 ab ± 23.6 (−26.9) |
Control | 24.09 a ± 3.20 (0.0) | 385.1 c ± 13.1 (0.0) |
No. | Compound | MW | Formula | Classification | Peak Area (%) | ||
---|---|---|---|---|---|---|---|
Methanol Extract | Hexane Extract | EtOAc Extract | |||||
1 | 1-Butanol. 2-methyl- acetate | 130 | C7H14O2 | Carboxylic acid esters | 7.65 | - | 22.37 |
2 | Maltol * | 126 | C6H6O3 | Pyranones | - | - | 1.09 |
3 | Benzofuran. 2.3-dihydro- * | 120 | C8H8O | Benzofurans | - | - | 1.11 |
4 | 4-Ethyl-2-hydroxycyclopent-2-en-1-one | 126 | C7H10O2 | Cyclic ketones | - | - | 0.77 |
5 | 1.2.3-Propanetriol. 1-acetate | 134 | C5H10O4 | Glycerols | 1.77 | - | - |
6 | Ethanone. 1-(2-hydroxy-5-methylphenyl)- | 150 | C9H10O2 | Alkyl-phenylketones | - | - | 1.01 |
7 | 4-Acetoxy-3-methoxystyrene | 192 | C11H12O3 | Phenols | - | - | 1.01 |
8 | trans-Linalool oxide (furanoid) | 170 | C10H18O2 | Tetrahydrofurans | - | - | 1.71 |
9 | 2H-Pyran-3-ol, 6-ethenyltetrahydro-2,2,6-trimethyl- | 170 | C10H18O2 | Tetrahydrofurans | - | - | 1.71 |
10 | Ethanol. 2-[2-(2-butoxyethoxy)ethoxy]- * | 206 | C10H22O4 | Dialkyl ethers | - | 0.75 | 1.52 |
11 | Formic acid. pentyl ester | 116 | C6H12O2 | Carboxylic acid esters | 1.65 | - | - |
12 | 1.3-Benzenediol. o-(2-furoyl)-o’-ethoxycarbonyl- | 276 | C14H12O6 | Benzenoids | 1.65 | - | - |
13 | Acetamide. N-acetyl-N-5methyl- | 115 | C5H9NO2 | Carboximidic acids | 17.6 | - | - |
14 | L-Phenylalanine. N-acetyl-, methyl ester | 221 | C12H15NO3 | Phenylalanines | - | - | 1.15 |
15 | 1H-Imidazole. 1-acetyl- | 110 | C5H6N2O | Carbonylimidazoles | - | 2.61 | - |
16 | Methyl palmitate * | 270 | C17H34O2 | Fatty acids | 15.23 | 24.04 | - |
17 | Palmitic acid * | 256 | C16H32O2 | Fatty acids | 10.2 | 20.03 | 6.43 |
18 | n-Decanoic acid * | 172 | C10H20O2 | Fatty acids | 10.2 | - | - |
19 | 5.10-Pentadecadien-1-ol. (Z.Z)- | 224 | C15H28O0 | Fatty alcohols | 8.13 | - | - |
20 | Pyrrole * | 67 | C4H5N | Pyrroles | 8.13 | - | - |
21 | 9.12-Octadecadienoic acid. methyl ester * | 294 | C19H34O2 | Fatty acids | - | 16.12 | - |
22 | 10-Pentadecen-5-yn-1-ol. (E)- | 222 | C15H26O | Fatty alcohols | 4.04 | - | - |
23 | Phytol | 296 | C20H40O | Diterpenoids | - | 0.75 | - |
24 | Pentanoic acid. 2-methyl- | 116 | C6H12O2 | Fatty acids | 0.6 | - | - |
25 | 1-Hexyl-2-nitrocyclohexane | 213 | C12H23NO2 | Cycloalkanes | - | 12.15 | 6.83 |
26 | Stearic acid * | 284 | C18H36O2 | Fatty acids | - | 1.8 | - |
27 | 2-Butanone. 3-methoxy-3-methyl- | 116 | C6H12O2 | Ketones | - | 1.8 | - |
28 | n-Decanoic acid * | 172 | C10H20O2 | Fatty acids | - | 1.8 | - |
29 | Hexanedioic acid, bis(2-ethylhexyl) ester * | 370 | C22H42O4 | Fatty acids | - | - | 0.65 |
30 | Paramethadione | 157 | C7H11NO3 | Oxazolidinediones | - | - | 0.65 |
31 | Stigmasterol * | 412 | C29H48O | Triterpenoids | - | 0.83 | - |
32 | γ-Sitosterol * | 414 | C29H50O | Triterpenoids | - | 1.89 | - |
33 | Lupeol * | 426 | C30H50O | Triterpenoids | - | 1.66 | - |
34 | 2.4.4-Trimethyl-3-hydroxymethyl-5a-(3-methyl-but-2-enyl)-cyclohexene | 222 | C15H26O | Cycloalkanes | - | 1.66 | - |
35 | 2R-Acetoxymethyl-1.3.3-trimethyl-4t-(3-methyl-2-buten-1-yl)-1t-cyclohexanol | 282 | C17H30O3 | Cycloalkanes | - | 1.66 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thang, P.T.; Vien, N.V.; Anh, L.H.; Xuan, T.D.; Duong, V.X.; Nhung, N.T.; Trung, K.H.; Quan, N.T.; Nguyen, C.C.; Loan, L.T.K.; et al. Assessment of Allelopathic Activity of Arachis pintoi Krapov. & W.C. Greg as a Potential Source of Natural Herbicide for Paddy Rice. Appl. Sci. 2023, 13, 8268. https://doi.org/10.3390/app13148268
Thang PT, Vien NV, Anh LH, Xuan TD, Duong VX, Nhung NT, Trung KH, Quan NT, Nguyen CC, Loan LTK, et al. Assessment of Allelopathic Activity of Arachis pintoi Krapov. & W.C. Greg as a Potential Source of Natural Herbicide for Paddy Rice. Applied Sciences. 2023; 13(14):8268. https://doi.org/10.3390/app13148268
Chicago/Turabian StyleThang, Phan Trung, Nguyen Van Vien, La Hoang Anh, Tran Dang Xuan, Vu Xuan Duong, Nguyen Thanh Nhung, Khuat Huu Trung, Nguyen Thanh Quan, Cam Chau Nguyen, Le Thi Kim Loan, and et al. 2023. "Assessment of Allelopathic Activity of Arachis pintoi Krapov. & W.C. Greg as a Potential Source of Natural Herbicide for Paddy Rice" Applied Sciences 13, no. 14: 8268. https://doi.org/10.3390/app13148268
APA StyleThang, P. T., Vien, N. V., Anh, L. H., Xuan, T. D., Duong, V. X., Nhung, N. T., Trung, K. H., Quan, N. T., Nguyen, C. C., Loan, L. T. K., Khanh, T. D., & Ha, T. T. T. (2023). Assessment of Allelopathic Activity of Arachis pintoi Krapov. & W.C. Greg as a Potential Source of Natural Herbicide for Paddy Rice. Applied Sciences, 13(14), 8268. https://doi.org/10.3390/app13148268