Renewable-Based Microgrids: Design, Control and Optimization
1. Introduction
2. Design Control and Optimization of Renewable-Based MGs
3. Future Challenges and Perspectives
Conflicts of Interest
References
- Tostado-Véliz, M.; Kamel, S.; Hasanien, H.M.; Turky, R.A.; Jurado, F. Uncertainty-aware day-ahead scheduling of microgrids considering response fatigue: An IGDT approach. Appl. Energy 2022, 310, 118611. [Google Scholar] [CrossRef]
- Tostado-Véliz, M.; Jordehi, A.R.; Fernández-Lobato, L.; Jurado, F. Robust energy management in isolated microgrids with hydrogen storage and demand response. Appl. Energy 2023, 345, 121319. [Google Scholar] [CrossRef]
- Panda, S.; Mohanty, S.; Rout, P.K.; Sahu, B.K.; Parida, S.M.; Kotb, H.; Flah, A.; Tostado-Véliz, M.; Abdul Samad, B.; Shouran, M. An Insight into the Integration of Distributed Energy Resources and Energy Storage Systems with Smart Distribution Networks Using Demand-Side Management. Appl. Sci. 2022, 12, 8914. [Google Scholar] [CrossRef]
- Malki, A.; Mohamed, A.A.; Rashwan, Y.I.; El-Sehiemy, R.A.; Elhosseini, M.A. Parameter Identification of Photovoltaic Cell Model Using Modified Elephant Herding Optimization-Based Algorithms. Appl. Sci. 2021, 11, 11929. [Google Scholar] [CrossRef]
- Mikkili, S.; Krishna, R.V.; Bonthagorla, P.K.; Senjyu, T. Performance Analysis of Modular Multilevel Converter with NPC Sub-Modules in Photovoltaic Grid-Integration. Appl. Sci. 2022, 12, 1219. [Google Scholar] [CrossRef]
- Kraiem, H.; Aymen, F.; Yahya, L.; Triviño, A.; Alharthi, M.; Ghoneim, S.S.M. A Comparison between Particle Swarm and Grey Wolf Optimization Algorithms for Improving the Battery Autonomy in a Photovoltaic System. Appl. Sci. 2021, 11, 7732. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, C.; Dong, M.; Zhang, J.; Han, D.; Chen, H. Cooperative Multi-Objective Optimization of DC Multi-Microgrid Systems in Distribution Networks. Appl. Sci. 2021, 11, 8916. [Google Scholar] [CrossRef]
- El-Sattar, H.A.; Kamel, S.; Sultan, H.; Tostado-Véliz, M.; Eltamaly, A.M.; Jurado, F. Performance Analysis of a Stand-Alone PV/WT/Biomass/Bat System in Alrashda Village in Egypt. Appl. Sci. 2021, 11, 10191. [Google Scholar] [CrossRef]
- Espitia-Ibarra, M.; Maya-Duque, P.; Jaramillo-Duque, Á. Design and Development of a Management System for Energy Microgrids Using Linear Programming. Appl. Sci. 2022, 12, 3980. [Google Scholar] [CrossRef]
- Zhou, L.; Zhou, Y. Study on thermo-electric-hydrogen conversion mechanisms and synergistic operation on hydrogen fuel cell and electrochemical battery in energy flexible buildings. Energy Convers. Manag. 2023, 277, 116610. [Google Scholar] [CrossRef]
- Faghiri, M.; Samizadeh, S.; Nikoofard, A.; Khosravy, M.; Senjyu, T. Mixed-Integer Linear Programming for Decentralized Multi-Carrier Optimal Energy Management of a Micro-Grid. Appl. Sci. 2022, 12, 3262. [Google Scholar] [CrossRef]
- Abdel-Mawgoud, H.; Kamel, S.; Tostado-Véliz, M.; Elattar, E.E.; Hussein, M.M. Optimal Incorporation of Photovoltaic Energy and Battery Energy Storage Systems in Distribution Networks Considering Uncertainties of Demand and Generation. Appl. Sci. 2021, 11, 8231. [Google Scholar] [CrossRef]
- Almaleh, A.; Tipper, D.; Al-Gahtani, S.F.; El-Sehiemy, R. A Novel Model for Enhancing the Resilience of Smart MicroGrids’ Critical Infrastructures with Multi-Criteria Decision Techniques. Appl. Sci. 2022, 12, 9756. [Google Scholar] [CrossRef]
- Tostado-Véliz, M.; Hasanien, H.M.; Jordehi, A.R.; Turky, R.A.; Jurado, F. Risk-averse optimal participation of a DR-intensive microgrid in competitive clusters considering response fatigue. Appl. Energy 2023, 339, 120960. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tostado-Véliz, M.; Arévalo, P.; Kamel, S.; El-Sehiemy, R.A.; Senjyu, T. Renewable-Based Microgrids: Design, Control and Optimization. Appl. Sci. 2023, 13, 8235. https://doi.org/10.3390/app13148235
Tostado-Véliz M, Arévalo P, Kamel S, El-Sehiemy RA, Senjyu T. Renewable-Based Microgrids: Design, Control and Optimization. Applied Sciences. 2023; 13(14):8235. https://doi.org/10.3390/app13148235
Chicago/Turabian StyleTostado-Véliz, Marcos, Paul Arévalo, Salah Kamel, Ragab A. El-Sehiemy, and Tomonobu Senjyu. 2023. "Renewable-Based Microgrids: Design, Control and Optimization" Applied Sciences 13, no. 14: 8235. https://doi.org/10.3390/app13148235
APA StyleTostado-Véliz, M., Arévalo, P., Kamel, S., El-Sehiemy, R. A., & Senjyu, T. (2023). Renewable-Based Microgrids: Design, Control and Optimization. Applied Sciences, 13(14), 8235. https://doi.org/10.3390/app13148235