Designing Bio-Based Color Sensor from Myofibrillar-Protein-Based Edible Film Incorporated with Sappan Wood (Caesalpinia sappan L.) Extract for Smart Food Packaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Sappan Wood Surimi Edible Film
2.3. Physical-Properties Analysis
2.3.1. Thickness
2.3.2. Transparency
2.3.3. Mechanical Properties
2.4. Color Values at Different pH and Soaking Times at Different Conditions
2.5. Statistical Analysis
3. Results
3.1. Physical Properties
3.2. Color Values of SSEF at Different Conditions
3.2.1. Color Values at Different pH
3.2.2. Color Values at Different Soaking Times in Different Conditions
4. Discussion
4.1. Physical Properties
4.2. Color Values of SSEFs in Different Conditions
4.2.1. Color Values at Different pH
4.2.2. Color Values at Different Soaking Times in Different Conditions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodrigues, C.; Souza, V.G.L.; Coelhoso, I.; Fernando, A.L. Bio-Based Sensors for Smart Food Packaging—Current Applications and Future Trends. Sensors 2021, 21, 2148. [Google Scholar] [CrossRef]
- Rai, M.; Ingle, A.P.; Gupta, I.; Pandit, R.; Paralikar, P.; Gade, A.; Chaud, M.V.; dos Santos, C.A. Smart Nanopackaging for the Enhancement of Food Shelf Life. Environ. Chem. Lett. 2019, 17, 277–290. [Google Scholar] [CrossRef]
- Balbinot-Alfaro, E.; Craveiro, D.V.; Lima, K.O.; Costa, H.L.G.; Lopes, D.R.; Prentice, C. Intelligent Packaging with PH Indicator Potential. Food Eng. Rev. 2019, 11, 235–244. [Google Scholar] [CrossRef]
- Bahrami, A.; Delshadi, R.; Assadpour, E.; Jafari, S.M.; Williams, L. Antimicrobial-Loaded Nanocarriers for Food Packaging Applications. Adv. Colloid Interface Sci. 2020, 278, 102140. [Google Scholar] [CrossRef]
- Tran, T. Active Antioxidant Additives in Sustainable Food Packaging. In Sustainable Food Packaging Technology; Wiley: Hoboken, NJ, USA, 2021; pp. 349–367. [Google Scholar]
- Almasi, H.; Oskouie, M.J.; Saleh, A.A. Review on Techniques Utilized for Design of Controlled Release Food Active Packaging. Crit. Rev. Food Sci. Nutr. 2020, 61, 2601–2621. [Google Scholar] [CrossRef] [PubMed]
- Terra, A.L.M.; Moreira, J.B.; Costa, J.A.V.; de Morais, M.G. Development of Time-PH Indicator Nanofibers from Natural Pigments: An Emerging Processing Technology to Monitor the Quality of Foods. LWT-Food Sci. Technol. 2021, 142, 111020. [Google Scholar] [CrossRef]
- Alizadeh-Sani, M.; Tavassoli, M.; McClements, D.J.; Hamishehkar, H. Multifunctional Halochromic Packaging Materials: Saffron Petal Anthocyanin Loaded-Chitosan Nanofiber/Methyl Cellulose Matrices. Food Hydrocoll. 2021, 111, 106237. [Google Scholar] [CrossRef]
- Alizadeh-Sani, M.; Tavassoli, M.; Mohammadian, E.; Ehsani, A.; Khaniki, G.J.; Priyadarshi, R.; Rhim, J.-W. PH-Responsive Color Indicator Films Based on Methylcellulose/Chitosan Nanofiber and Barberry Anthocyanins for Real-Time Monitoring of Meat Freshness. Int. J. Biol. Macromol. 2021, 166, 741–750. [Google Scholar] [CrossRef]
- Drago, E.; Campardelli, R.; Pettinato, M.; Perego, P. Innovations in Smart Packaging Concepts for Food: An Extensive Review. Foods 2020, 9, 1628. [Google Scholar] [CrossRef]
- Koxmak, S.; Yimamumaimaiti, T.; Abdukeremu, H.; Nizamidin, P.; Yimit, A. Detection of Amines in Lamb Spoilage by Optical Waveguide Sensor Based on Bromophenol Blue-Silicon Composite Film. Chem. Res. Chin. Univ. 2019, 35, 193–199. [Google Scholar] [CrossRef]
- Morsy, M.K.; Zór, K.; Kostesha, N.; Alstrøm, T.S.; Heiskanen, A.; El-Tanahi, H.; Sharoba, A.; Papkovsky, D.; Larsen, J.; Khalaf, H.; et al. Development and Validation of a Colorimetric Sensor Array for Fish Spoilage Monitoring. Food Control. 2016, 60, 346–352. [Google Scholar] [CrossRef]
- Pacquit, A.; Lau, K.T.; McLaughlin, H.; Frisby, J.; Quilty, B.; Diamond, D. Development of a Volatile Amine Sensor for the Monitoring of Fish Spoilage. Talanta 2006, 69, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Kuswandi, B.; Jayus; Restyana, A.; Abdullah, A.; Heng, L.Y.; Ahmad, M. A Novel Colorimetric Food Package Label for Fish Spoilage Based on Polyaniline Film. Food Control. 2012, 25, 184–189. [Google Scholar] [CrossRef]
- Yusuf, M.; Shabbir, M.; Mohammad, F. Natural Colorants: Historical, Processing and Sustainable Prospects. Nat. Prod. Bioprospect. 2017, 7, 123–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Xu, F.; Zhan, J. Introduction of Natural Pigments from Microorganisms. In Bio-Pigmentation and Biotechnological Implementations; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; pp. 1–22. [Google Scholar]
- Pourjavaher, S.; Almasi, H.; Meshkini, S.; Pirsa, S.; Parandi, E. Development of a Colorimetric PH Indicator Based on Bacterial Cellulose Nanofibers and Red Cabbage (Brassica oleraceae) Extract. Carbohydr. Polym. 2017, 156, 193–201. [Google Scholar] [CrossRef]
- Ezati, P.; Bang, Y.-J.; Rhim, J.-W. Preparation of a Shikonin-Based PH-Sensitive Color Indicator for Monitoring the Freshness of Fish and Pork. Food Chem. 2021, 337, 127995. [Google Scholar] [CrossRef]
- Jin, S.-K.; Ha, S.-R.; Choi, J.-S. Effect of Caesalpinia sappan L. extract on physico-chemical properties of emulsion-type pork sausage during cold storage. Meat Sci. 2015, 110, 245–252. [Google Scholar] [CrossRef]
- Ngamwonglumlert, L.; Devahastin, S.; Chiewchan, M.; Raghavan, G.S.V. Color and molecular structure alterations of brazilein extracted from Caesalpinia sappan L. under diferent pH and heating conditions. Sci. Rep. 2020, 10, 12386. [Google Scholar] [CrossRef]
- de Oliveira, L.F.C.; Edwards, H.G.M.; Velozo, E.S.; Nesbitt, M. Vibrational spectroscopic study of brazilin and brazilein, the main constituents of brazilwood from Brazil. Vib. Spectrosc. 2002, 28, 243–249. [Google Scholar] [CrossRef]
- Azman, E.M.; Yusof, N.; Chatzifragkou, A.; Charalampopoulos, D. Stability Enhancement of Anthocyanins from Blackcurrant (Ribes Nigrum L.) Pomace through Intermolecular Copigmentation. Molecules 2022, 27, 5489. [Google Scholar] [CrossRef]
- Hanani, Z.N.; Roos, Y.; Kerry, J. Use and application of gelatin as potential biodegradable packaging materials for food products. Int. J. Biol. Macromol. 2014, 71, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Parimi, N.S.; Singh, M.; Kastner, J.R.; Das, K.C.; Forsberg, L.S.; Azadi, P. Optimization of Protein Extraction from Spirulina platensis to Generate a Potential Co-Product and a Biofuel Feedstock with Reduced Nitrogen Content. Front. Energy Res. 2015, 3, 30. [Google Scholar] [CrossRef] [Green Version]
- Soto-Sierra, L.; Stoykova, P.; Nikolov, Z.L. Extraction and fractionation of microalgae-based protein products. Algal Res. 2018, 36, 175–192. [Google Scholar] [CrossRef]
- Yingchutrakul, M.; Wasinnitwing, N.; Benjakul, S.; Singh, A.; Zheng, Y.; Mubango, E.; Luo, Y.; Tan, Y.; Hong, H. Asian Carp, an Alternative Material for Surimi Production: Progress and Future. Foods 2022, 11, 1318. [Google Scholar] [CrossRef] [PubMed]
- Chinabhark, S.; Benjakul, S.; Prodpran, T. Effect of pH on the properties of protein-based film from bigeye snapper (Priacanthus tayenus) surimi. Bioresour. Technol. 2007, 98, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Shiku, Y.; Hamaguchi, P.Y.; Benjakul, S.; Visessanguan, W.; Tanaka, M. Effect of surimi quality on properties of edible films based on Alaska Pollack. Food Chem. 2004, 86, 493–499. [Google Scholar] [CrossRef]
- Nie, X.; Gong, Y.; Wang, N.; Meng, X. Preparation and characterization of edible myofibrillar protein-based film incorporated with grape seed procyanidins and green tea polyphenol. LWT-Food Sci. Technol. 2015, 64, 1042–1046. [Google Scholar] [CrossRef]
- Păeşescu, I.; Dreavă, D.-M.; Bîtcan, I.; Argetoianu, R.; Dăescu, D.; Medeleanu, M. Bio-Based pH Indicator Films for Intelligent Food Packaging Applications. Polymers 2022, 14, 3622. [Google Scholar] [CrossRef]
- Amorim, L.F.A.; Gomes, A.P.; Gouveia, I.C. Design and Preparation of a Biobased Colorimetric pH Indicator from Cellulose and Pigments of Bacterial Origin, for Potential Application as Smart Food Packaging. Polymers 2022, 14, 3869. [Google Scholar] [CrossRef]
- Shiku, Y.; Hamaguchi, P.Y.; Tanaka, M. Effect of pH on the preparation of edible films based on fish myofibrillar proteins. Fish. Sci. 2003, 69, 1026–1032. [Google Scholar] [CrossRef]
- Rostini, I.; Ibrahim, B.; Trilaksani, W. Effect of Protein-Based Edible Coating from Red Snapper (Lutjanus sp.) Surimi on Cooked Shrimp. IOP Conf. Ser. Earth Environ. Sci. 2018, 116, 012041. [Google Scholar] [CrossRef]
- Jongjareonrak, A.; Benjakul, S.; Visessanguan, W.; Tanaka, M. Antioxidative activity and properties of fish skin gelatin films incorporated with BHT and atocopherol. Food Hydrocoll. 2011, 22, 449–458. [Google Scholar] [CrossRef]
- American Society for Testing and Materials. Standard test method for tensile properties of thin plastic sheeting-D882-02. In Annual Book of ASTM Standards; American Society for Testing and Materials: Philadelphia, PA, USA, 2002; pp. 1–9. [Google Scholar]
- Wan, N.H.B.C.; Nafchi, A.M.; Huda, N. Tensile Strength, Elongation at Breaking Point and Surface Color of a Biodegradable Film Based on a Duck Feet Gelatin and Polyvinyl Alcohol Blend. Asia Pasific J. Sustain. Agric. Food Energy 2018, 6, 16–21. [Google Scholar]
- Renaldi, G.; Junsara, K.; Jannu, T.; Sirinupong, N.; Samakradhamrongthai, R.S. Physicochemical, textural, and sensory qualities of pectin/gelatin gummy jelly incorporated with Garcinia atroviridis and its consumer acceptability. Int. J. Gastron. Food Sci. 2022, 28, 100505. [Google Scholar] [CrossRef]
- Aldana, D.S.; Contreras-Esquivel, J.C.; Nevárez-Moorillón, G.V.; Aguilar, C.N. Characterization of edible films from pectic extracts and essential oil from Mexican lime. CyTA J. Food 2014, 13, 17–25. [Google Scholar]
- Garavand, F.; Rouhi, M.; Razavi, S.H.; Cacciotti, I.; Mohammadi, R. Improving the integrity of natural biopolymer films used in food packaging by crosslinking approach: A review. Int. J. Biol. Macromol. 2017, 104, 687–707. [Google Scholar] [CrossRef]
- Kokoszka, S.; Debeaufort, F.; Lenart, A.; Voilley, A. Water vapour permeability, thermal and wetting properties of whey protein isolate based edible films. Int. Dairy J. 2010, 20, 53–60. [Google Scholar] [CrossRef]
- Karbowiok, T.; Debeaufort, F.; Voilley, A. Influence of thermal process on structure and functional properties of emulsion-based edible films. Food Hydrocoll. 2007, 21, 879–888. [Google Scholar] [CrossRef]
- Chakravartula, S.S.N.; Soccio, M.; Lotti, N.; Balestra, F.; Rosa, M.D.; Siracusa, V. Characterization of Composite Edible Films Based on Pectin/Alinate/Whey Protein Concentrate. Materials 2019, 12, 2454. [Google Scholar] [CrossRef] [Green Version]
- Kampeerapappun, P.; Aht-Ong, D.; Pentrakon, D.; Srikulkit, K. Preparation of Cassava Starch/Montmorillonite Composite Film. Carbohydr. Polym. 2007, 67, 155–163. [Google Scholar] [CrossRef]
- Kong, I.; Lamudji, I.G.; Angkow, K.J.; Insani, R.M.S.; Mas, M.A.; Pui, L.P. Application of Edible Film with Asian Plant Extracts as an Innovative Food Packaging: A Review. Coatings 2023, 13, 245. [Google Scholar] [CrossRef]
- Silva, V.D.M.; Macedo, M.C.C.; Rodrigues, C.G.; Santos, A.N.; Loyola, A.C.F.; Fante, C.A. Biodegradable edible films of ripe banana peel and starch enriched with extract of Eriobotrya japonica leaves. Food Biosci. 2020, 38, 100750. [Google Scholar] [CrossRef]
- Liu, J.; Liu, S.; Wu, Q.; Gu, Y.; Kan, J.; Jin, C. Effect of protocatechuic acid incorporation on the physical, mechanical, structural and antioxidant properties of chitosan film. Food Hydrocoll. 2017, 73, 90–100. [Google Scholar] [CrossRef]
- Fossen, T.; Cabrita, L.; Andersen, Ø.M. Colour and stability of pure anthocyanins influenced by pH including the alkaline region. Food Chem. 1998, 63, 435–440. [Google Scholar] [CrossRef]
- Reyes, L.; Cisneros-Zevallos, L. Degradation kinetics and colour of anthocyanins in aqueous extracts of purple- and red-flesh potatoes (Solanum tuberosum L.). Food Chem. 2007, 100, 885–894. [Google Scholar] [CrossRef]
- Hurtado, N.H.; Morales, A.L.; González-Miret, M.L.; Escudero-Gilete, M.L.; Heredia, F.J. Colour, pH stability and antioxidant activity of anthocyanin rutinosides isolated from tamarillo fruit (Solanum betaceum Cav.). Food Chem. 2009, 117, 88–93. [Google Scholar] [CrossRef]
- Calogero, G.; Bartolotta, A.; Marco, G.D.; Carlo, A.D.; Bonaccorso, F. Vegetable-based dye-sensitized solar cells. Chem. Soc. Rev. 2015, 44, 3244–3294. [Google Scholar] [CrossRef]
- He, J.; Giusti, M.M. Anthocyanins: Natural colorants with health-promoting properties. Annu. Rev. Food Sci. Technol. 2010, 1, 163–187. [Google Scholar] [CrossRef]
- Wrolstad, R.E.; Culver, C.A. Alternatives to those artificial FD&C food colorants. Annu. Rev. Food Sci. Technol. 2012, 3, 59–77. [Google Scholar]
- Rose, P.M.; Cantrill, V.; Benohoud, M.; Tidder, A.; Rayner, C.M.; Blackburn, R.S. Application of anthocyanins from blackcurrant (Ribes nigrum L.) fruit waste as renewable hair dyes. J. Agric. Food Chem. 2018, 66, 6790–6798. [Google Scholar] [CrossRef]
- Trouillas, P.; Sancho-García, J.C.; De Freitas, V.; Gierschner, J.; Otyepka, M.; Dangles, O. Stabilizing and modulating colour by copigmentation: Insights from theory and experiment. Chem. Rev. 2016, 116, 4937–4982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houghton, A.; Appelhagen, I.; Martin, C. Natural blues: Structure meets function in anthocyanins. Plants 2021, 10, 726. [Google Scholar] [CrossRef] [PubMed]
Treatment (%) | Thickness (mm) | Transparency | Tensile Strength (mPa) | Elongation at Break (%) |
---|---|---|---|---|
0.00 | 0.13 ± 0.01 d | 3.46 ± 0.01 d | 15.43 ± 0.01 a | 11.23 ± 0.01 c |
0.15 | 0.17 ± 0.01 c | 2.16 ± 0.13 a | 10.15 ± 1.1 b | 12.68 ± 1.17 b |
0.25 | 0.19 ± 0.01 b | 1.26 ± 0.03 b | 8.48 ± 1.0 c | 14.80 ± 0.96 a |
0.35 | 0.22 ± 0.01 a | 0.84 ± 0.04 c | 7.70 ± 0.7 c | 15.70 ± 1.26 a |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Treatment | pH | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | ||
0.15% | |||||||||||||||
L* | 74.97 ± 0.02 Aa | 74.83 ± 0.02 Ba | 74.28 ± 0.03 Ca | 73.96 ± 0.02 Da | 73.55 ± 0.02 Ea | 73.29 ± 0.02 Fa | 72.96 ± 0.01 Ga | 72.45 ± 0.02 Ha | 72.03 ± 0.02 Ia | 71.85 ± 0.02 Ja | 71.25 ± 0.01 Ka | 70.49 ± 0.03 La | 69.22 ± 0.03 Ma | 65.86 ± 0.02 Na | |
a* | 5.43 ± 0.01 Nc | 6.75 ± 0.04 Mc | 8.29 ± 0.02 Lc | 9.45 ± 0.07 Kc | 9.86 ± 0.02 Jc | 10.39 ± 0.01 Ic | 10.67 ± 0.01 Hc | 11.33 ± 0.01 Gc | 12.24 ± 0.01 Fc | 16.33 ± 0.01 Ec | 19.51 ± 0.04 Dc | 34.25 ± 0.02 Cc | 47.28 ± 0.03 Bc | 48.87 ± 0.02 Ac | |
b* | 22.15 ± 0.02 Ac | 21.85 ± 0.03 Bc | 21.22 ± 0.03 Cc | 20.26 ± 0.01 Dc | 19.89 ± 0.03 Ec | 19.04 ± 0.01 Fc | 18.74 ± 0.01 Gc | 18.18 ± 0.01 Hc | 17.84 ± 0.02 Ic | 16.72 ± 0.04 Jc | 15.68 ± 0.02 Kc | 13.39 ± 0.01 Lc | 12.46 ± 0.01 Mc | 11.75 ± 0.03 Nc | |
ΔE | 2.30 ± 0.02 Lc | 1.93 ± 0.01 Mc | 2.33 ± 0.01 Lc | 3.40 ± 0.07 Kb | 3.81 ± 0.03 Jb | 4.62 ± 0.01 Ic | 5.01 ± 0.01 Hc | 5.88 ± 0.01 Gc | 6.89 ± 0.02 Fc | 11.04 ± 0.02 Ec | 14.42 ± 0.04 Dc | 29.13 ± 0.01 Cc | 42.14 ± 0.02 Bb | 44.20 ± 0.01 Ab | |
0.25% | |||||||||||||||
L* | 73.56 ± 0.01 Ab | 73.04 ± 0.05 Bb | 72.81 ± 0.02 Cb | 72.22 ± 0.02 Db | 71.74 ± 0.01 Eb | 71.55 ± 0.02 Fb | 71.11 ± 0.01 Gb | 70.86 ± 0.02 Hb | 70.53 ± 0.01 Ib | 70.18 ± 0.02 Jb | 69.57 ± 0.02 Kb | 67.85 ± 0.01 Lb | 64.92 ± 0.01 Mb | 64.75 ± 0.02 Nb | |
a* | 7.68 ± 0.01 Nb | 8.12 ± 0.01 Mb | 9.55 ± 0.01 Lb | 10.89 ± 0.02 Kb | 11.58 ± 0.02 Jb | 11.95 ± 0.01 Ib | 12.32 ± 0.01 Hb | 12.77 ± 0.01 Gb | 13.98 ± 0.01 Fb | 18.32 ± 0.01 Eb | 21.75 ± 0.02 Db | 38.63 ± 0.02 Cb | 49.78 ± 0.01 Bb | 50.22 ± 0.01 Ab | |
b* | 29.87 ± 0.01 Ab | 29.34 ± 0.04 Bb | 28.75 ± 0.03 Cb | 27.55 ± 0.02 Db | 26.98 ± 0.01 Eb | 25.54 ± 0.03 Fb | 24.66 ± 0.01 Gb | 22.78 ± 0.01 Hb | 21.97 ± 0.01 Ib | 21.01 ± 0.01 Jb | 19.56 ± 0.01 Kb | 17.45 ± 0.02 Lb | 15.92 ± 0.01 Mb | 15.65 ± 0.02 Nb | |
ΔE | 8.37 ± 0.01 La | 8.18 ± 0.03 Ma | 8.10 ± 0.03 Na | 8.61 ± 0.03 Kba | 8.89 ± 0.01 Ja | 10.14 ± 0.02 Ia | 10.84 ± 0.01 Ha | 12.61 ± 0.02 Ga | 13.54 ± 0.02 Fa | 15.91 ± 0.01 Ea | 18.86 ± 0.02 Db | 32.78 ± 0.01 Ca | 43.38 ± 0.01 Ba | 43.90 ± 0.01 Ac | |
0.35% | |||||||||||||||
L* | 60.96 ± 0.02 Ac | 59.45 ± 0.05 Bc | 58.97 ± 0.02 Cc | 58.24 ± 0.02 Dc | 57.55 ± 0.02 Ec | 57.21 ± 0.02 Fc | 56.75 ± 0.02 Gc | 55.65 ± 0.01 Hc | 54.17 ± 0.01 Ic | 53.67 ± 0.02 Jc | 51.11 ± 0.04 Kc | 48.25 ± 0.02 Lc | 44.86 ± 0.02 Mc | 44.35 ± 0.02 Nc | |
a* | 16.72 ± 0.01 Na | 17.56 ± 0.04 Ma | 18.75 ± 0.03 La | 19.53 ± 0.01 Ka | 19.94 ± 0.02 Ja | 20.89 ± 0.02 Ia | 21.77 ± 0.02 Ha | 22.14 ± 0.01 Ga | 23.34 ± 0.03 Fa | 27.76 ± 0.02 Ea | 34.28 ± 0.01 Da | 45.73 ± 0.01 Ca | 55.25 ± 0.02 Ba | 58.25 ± 0.01 Aa | |
b* | 43.58 ± 0.01 Aa | 43.25 ± 0.03 Ba | 42.63 ± 0.04 Ca | 42.21 ± 0.02 Da | 41.75 ± 0.03 Ea | 40.44 ± 0.01 Fa | 39.37 ± 0.01 Ga | 38.21 ± 0.03 Ha | 37.96 ± 0.02 Ia | 35.72 ± 0.01 Ja | 33.55 ± 0.02 Ka | 30.12 ± 0.03 La | 26.85 ± 0.02 Ma | 25.14 ± 0.02 Na | |
ΔE | 3.77 ± 0.01 Lb | 3.03 ± 0.05 Nb | 2.83 ± 0.05 Mb | 3.26 ± 0.02 Kb | 3.98 ± 0.04 Jb | 5.36 ± 0.01 Ib | 6.69 ± 0.01 Hb | 8.28 ± 0.02 Gb | 9.65 ± 0.01 Fb | 13.61 ± 0.01 Eb | 20.31 ± 0.02 Da | 31.94 ± 0.02 Cb | 42.42 ± 0.02 Bb | 45.86 ± 0.02 Aa |
Treatment | Time (min) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | ||
0.15% | ||||||||||||
L* | 73.09 ± 0.01 Ea | 73.09 ± 0.02 Ea | 73.16 ± 0.03 Da | 73.24 ± 0.02 Ca | 73.28 ± 0.01 Ba | 73.38 ± 0.01 Aa | 73.39 ± 0.01 Aa | 73.39 ± 0.02 Aa | 73.41 ± 0.02 Aa | 73.41 ± 0.02 Aa | 73.41 ± 0.01 Aa | |
a* | 6.29 ± 0.02 Ac | 6.27 ± 0.01 Ac | 6.13 ± 0.02 Bc | 5.98 ± 0.01 Cc | 5.86 ± 0.03 Dc | 5.77 ± 0.02 Ec | 73.39 ± 0.01 Aa | 73.39 ± 0.02 Aa | 5.66 ± 0.01 Gc | 5.65 ± 0.03 Gc | 5.65 ± 0.01 Gc | |
b* | 21.15 ± 0.01 Ac | 20.86 ± 0.02 Bc | 20.52 ± 0.01 Cc | 20.33 ± 0.02 Dc | 19.82 ± 0.01 Ec | 19.66 ± 0.02 Fc | 19.65 ± 0.02 Fc | 19.63 ± 0.02 FGc | 19.63 ± 0.01 FGc | 19.61 ± 0.03 Gc | 19.61 ± 0.01 Gc | |
ΔE | 0 | 0.29 ± 0.02 Ec | 0.65 ± 0.02 Dc | 0.89 ± 0.02 Cc | 1.41 ± 0.02 Bc | 1.60 ± 0.02 Ac | 1.63 ± 0.02 Ac | 1.68 ± 0.02 Ac | 1.68 ± 0.01 Ac | 1.69 ± 0.02 Ac | 1.69 ± 0.01 Ac | |
0.25% | ||||||||||||
L* | 67.56 ± 0.02 Gb | 67.56 ± 0.03 Gb | 67.68 ± 0.01 Fb | 66.23 ± 0.02 Db | 65.43 ± 0.01 Eb | 65.28 ± 0.01 Fb | 68.65 ± 0.01 Bb | 68.74 ± 0.03 Ab | 68.74 ± 0.01 Ab | 68.74 ± 0.02 Ab | 68.74 ± 0.03 Ab | |
a* | 10.81 ± 0.02 Ab | 10.74 ± 0.02 Bb | 10.52 ± 0.01 Cb | 10.49 ± 0.02 Db | 10.31 ± 0.02 Eb | 10.27 ± 0.01 Fb | 10.23 ± 0.02 Gb | 10.23 ± 0.02 Gb | 10.22 ± 0.01 Gb | 10.22 ± 0.02 Gb | 10.22 ± 0.01 Gb | |
b* | 34.79 ± 0.02 Ab | 34.54 ± 0.01 Bb | 33.48 ± 0.01 Cb | 32.27 ± 0.02 Db | 31.73 ± 0.01 Eb | 31.39 ± 0.01 Fb | 30.87 ± 0.01 Gb | 30.49 ± 0.01 Hb | 30.26 ± 0.01 Ib | 29.52 ± 0.01 Jb | 28.95 ± 0.01 Kb | |
ΔE | 0 | 0.26 ± 0.01 Jb | 1.35 ± 0.01 Ib | 2.56 ± 0.02 Hb | 3.13 ± 0.01 Gb | 3.53 ± 0.01 Fb | 4.11 ± 0.01 Eb | 4.50 ± 0.02 Db | 4.72 ± 0.01 Cb | 5.43 ± 0.01 Bb | 5.99 ± 0.03 Ab | |
0.35% | ||||||||||||
L* | 59.75 ± 0.01 Gc | 59.74 ± 0.02 Gc | 59.95 ± 0.01 Fc | 60.23 ± 0.01 Ec | 60.33 ± 0.02 Dc | 60.54 ± 0.02 Cc | 60.69 ± 0.02 Ac | 60.64 ± 0.02 Bc | 60.63 ± 0.02 Bc | 60.62 ± 0.03 Bc | 60.62 ± 0.01 Bc | |
a* | 19.96 ± 0.02 Aa | 18.72 ± 0.01 Ba | 17.21 ± 0.02 Ca | 16.96 ± 0.03 Da | 16.58 ± 0.01 Ea | 15.42 ± 0.02 Fa | 15.37 ± 0.01 Ga | 15.34 ± 0.01 Ha | 15.31 ± 0.02 Ha | 15.31 ± 0.02 Ha | 15.31 ± 0.01 Ha | |
b* | 45.07 ± 0.02 Aa | 44.25 ± 0.02 Ba | 42.23 ± 0.02 Ca | 42.21 ± 0.02 Ca | 40.05 ± 0.02 Da | 39.55 ± 0.02 Ea | 39.51 ± 0.02 Fa | 39.47 ± 0.01 Ga | 39.44 ± 0.02 GHa | 39.42 ± 0.01 Ha | 39.42 ± 0.01 Ha | |
ΔE | 0 | 1.49 ± 0.02 Fa | 3.96 ± 0.01 Ea | 4.17 ± 0.02 Da | 6.08 ± 0.02 Ca | 7.19 ± 0.02 Ba | 7.27 ± 0.02 Aa | 7.31 ± 0.01 Aa | 7.35 ± 0.01 Aa | 7.37 ± 0.01 Aa | 7.37 ± 0.01 Aa |
Treatment | Time (min) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | ||
0.15% | ||||||||||||
L* | 73.06 ± 0.01 Aa | 73.01 ± 0.02 Ba | 72.97 ± 0.01 Ca | 72.63 ± 0.01 Da | 72.16 ± 0.02 Ea | 71.64 ± 0.03 Fa | 71.62 ± 0.01 Fa | 71.62 ± 0.01 Fa | 71.61 ± 0.01 Fa | 71.61 ± 0.02 Fa | 71.61 ± 0.02 Fa | |
a* | 6.29 ± 0.01 Fc | 6.45 ± 0.03 Ec | 6.75 ± 0.02 Dc | 6.94 ± 0.02 Cc | 7.12 ± 0.01 Bc | 7.56 ± 0.02 Ac | 7.58 ± 0.02 Ac | 7.58 ± 0.01 Ac | 5.66 ± 0.01 Gc | 5.65 ± 0.03 Gc | 7.59 ± 0.01 Ac | |
b* | 21.15 ± 0.01 Ac | 20.64 ± 0.02 Bc | 20.41 ± 0.02 Cc | 20.11 ± 0.03 Dc | 19.85 ± 0.02 Ec | 18.92 ± 0.01 Fc | 18.91 ± 0.03 Fc | 18.91 ± 0.02 Fc | 18.91 ± 0.02 Fc | 18.91 ± 0.03 Fc | 18.91 ± 0.02 Fc | |
ΔE | 0 | 0.54 ± 0.03 Ec | 0.88 ± 0.02 Dc | 1.31 ± 0.03 Cc | 1.80 ± 0.03 Bc | 2.95 ± 0.02 Ac | 2.97 ± 0.01 Ac | 2.97 ± 0.02 Ac | 2.98 ± 0.01 Ac | 2.98 ± 0.04 Ac | 2.98 ± 0.02 Ac | |
0.25% | ||||||||||||
L* | 67.56 ± 0.01 Ab | 67.46 ± 0.02 Bb | 67.39 ± 0.03 Cb | 66.23 ± 0.02 Db | 65.43 ± 0.01 Eb | 65.28 ± 0.01 Fb | 65.27 ± 0.02 Fb | 65.26 ± 0.01 Fb | 65.26 ± 0.02 Fb | 65.26 ± 0.01 Fb | 65.26 ± 0.02 Fb | |
a* | 10.81 ± 0.01 Fb | 10.92 ± 0.01 Eb | 11.12 ± 0.03 Db | 11.37 ± 0.02 Cb | 11.58 ± 0.01 Bb | 11.65 ± 0.02 Ab | 11.67 ± 0.02 Ab | 11.69 ± 0.03 Ab | 11.69 ± 0.03 Ab | 11.69 ± 0.03 Ab | 11.69 ± 0.02 Ab | |
b* | 34.79 ± 0.01 Ab | 34.35 ± 0.03 Bb | 33.12 ± 0.01 Cb | 31.85 ± 0.02 Db | 31.62 ± 0.01 Eb | 30.25 ± 0.02 Fb | 30.22 ± 0.01 Gb | 30.21 ± 0.02 Gb | 30.21 ± 0.01 Gb | 30.21 ± 0.02 Gb | 30.21 ± 0.01 Gb | |
ΔE | 0 | 0.46 ± 0.03 Ec | 1.71 ± 0.01 Db | 3.28 ± 0.02 Cb | 3.90 ± 0.01 Bb | 5.15 ± 0.02 Ab | 5.18 ± 0.01 Ab | 5.20 ± 0.02 Ab | 5.20 ± 0.01 Ab | 5.20 ± 0.02 Ab | 5.20 ± 0.01 Ab | |
0.35% | ||||||||||||
L* | 59.76 ± 0.01 Ac | 59.22 ± 0.04 Bc | 58.86 ± 0.03 Cc | 57.82 ± 0.01 Dc | 57.39 ± 0.02 Ec | 56.87 ± 0.02 Fc | 56.84 ± 0.02 Gc | 56.81 ± 0.01 Gc | 56.81 ± 0.03 Gc | 56.81 ± 0.02 Gc | 56.81 ± 0.01 Gc | |
a* | 19.96 ± 0.01 Ga | 19.96 ± 0.03 Ga | 20.25 ± 0.02 Fa | 20.43 ± 0.01 Ea | 20.68 ± 0.03 Da | 20.88 ± 0.01 Ca | 20.96 ± 0.02 Ba | 21.05 ± 0.03 Aa | 21.06 ± 0.02 Aa | 21.08 ± 0.02 Aa | 21.08 ± 0.01 Aa | |
b* | 45.07 ± 0.01 Aa | 44.12 ± 0.03 Ba | 41.86 ± 0.01 Ca | 41.35 ± 0.01 Ca | 39.54 ± 0.02 Da | 38.25 ± 0.02 Ea | 38.11 ± 0.02 Ea | 38.11 ± 0.03 Ea | 38.05 ± 0.01 Ea | 38.04 ± 0.02 Ea | 38.04 ± 0.02 Ea | |
ΔE | 0 | 1.09 ± 0.03 Ea | 3.34 ± 0.01 Da | 4.22 ± 0.01 Ca | 6.06 ± 0.01 Ba | 7.46 ± 0.01 Aa | 7.61 ± 0.01 Aa | 7.63 ± 0.02 Aa | 7.68 ± 0.11 Aa | 7.70 ± 0.02 Aa | 7.70 ± 0.02 Aa |
Treatment | Time (min) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | ||
0.15% | ||||||||||||
L* | 73.09 ± 0.03 Aa | 72.45 ± 0.03 Ba | 70.26 ± 0.02 Ca | 65.36 ± 0.02 Da | 63.21 ± 0.02 Ea | 60.86 ± 0.02 Fa | 60.74 ± 0.02 Ga | 60.74 ± 0.02 Ga | 60.73 ± 0.02 Ga | 60.73 ± 0.01 Ga | 60.73 ± 0.01 Ga | |
a* | 6.29 ± 0.02 Fc | 11.33 ± 0.01 Ec | 17.50 ± 0.02 Dc | 20.64 ± 0.01 Cc | 23.23 ± 0.03 Bc | 24.76 ± 0.02 Ac | 24.76 ± 0.01 Ac | 24.78 ± 0.02 Ac | 24.79 ± 0.01 Ac | 24.79 ± 0.03 Ac | 24.79 ± 0.01 Ac | |
b* | 21.15 ± 0.01 Ac | 20.26 ± 0.03 Bc | 18.74 ± 0.01 Cc | 16.39 ± 0.01 Dc | 14.53 ± 0.02 Ec | 13.95 ± 0.02 Fc | 13.86 ± 0.02 Gc | 13.86 ± 0.02 Gc | 13.85 ± 0.02 Gc | 13.85 ± 0.02 Gc | 13.85 ± 0.02 Gc | |
ΔE | 0 | 5.16 ± 0.01 Fa | 11.81 ± 0.02 Ec | 16.98 ± 0.02 Db | 20.70 ± 0.02 Cb | 23.29 ± 0.03 Bb | 23.38 ± 0.01 Bb | 23.40 ± 0.02 Aa | 23.42 ± 0.02 Aa | 23.42 ± 0.02 Aa | 23.42 ± 0.02 Aa | |
0.25% | ||||||||||||
L* | 67.55 ± 0.01 Ab | 65.66 ± 0.03 Bb | 65.53 ± 0.02 Cb | 60.22 ± 0.01 Db | 58.96 ± 0.02 Eb | 55.96 ± 0.03 Fb | 54.03 ± 0.02 Gb | 54.03 ± 0.01 Gb | 54.02 ± 0.01 Gb | 54.02 ± 0.01 Gb | 54.02 ± 0.01 Gb | |
a* | 10.81 ± 0.02 Gb | 12.44 ± 0.02 Fb | 20.02 ± 0.01 Eb | 25.64 ± 0.02 Db | 27.22 ± 0.01 Cb | 32.54 ± 0.01 Ab | 32.51 ± 0.03 Bb | 32.50 ± 0.02 Bb | 32.50 ± 0.02 Bb | 32.50 ± 0.01 Bb | 32.50 ± 0.01 Bb | |
b* | 34.79 ± 0.02 Ab | 33.74 ± 0.02 Bb | 32.93 ± 0.02 Cb | 30.58 ± 0.01 Db | 28.34 ± 0.02 Eb | 26.79 ± 0.03 Fb | 26.81 ± 0.02 Fb | 26.81 ± 0.02 FGb | 26.82 ± 0.01 FGb | 26.83 ± 0.01 FGb | 26.83 ± 0.02 Gb | |
ΔE | 0 | 2.71 ± 0.03 Fc | 10.22 ± 0.01 Eb | 17.07 ± 0.02 Da | 19.62 ± 0.01 Cc | 25.90 ± 0.03 Bb | 26.79 ± 0.02 Aa | 26.78 ± 0.01 Aa | 26.78 ± 0.02 Aa | 26.78 ± 0.01 Aa | 26.78 ± 0.01 Aa | |
0.35% | ||||||||||||
L* | 59.75 ± 0.01 Ac | 57.23 ± 0.02 Bc | 53.71 ± 0.02 Cc | 52.65 ± 0.03 Dc | 51.47 ± 0.01 Ec | 51.44 ± 0.02 EFc | 51.44 ± 0.02 EFc | 51.41 ± 0.02 FGc | 51.40 ± 0.02 Gc | 51.40 ± 0.01 Gc | 51.40 ± 0.01 Gc | |
a* | 19.96 ± 0.01 Ha | 22.56 ± 0.01 Ga | 26.11 ± 0.03 Fa | 28.96 ± 0.02 Ea | 39.32 ± 0.01 Da | 42.39 ± 0.02 Aa | 42.25 ± 0.02 Ba | 42.25 ± 0.03 Ba | 42.23 ± 0.03 BCa | 42.21 ± 0.03 Ca | 42.21 ± 0.02 Ca | |
b* | 45.07 ± 0.01 Aa | 42.24 ± 0.01 Ba | 40.69 ± 0.02 Ca | 38.22 ± 0.01 Da | 35.34 ± 0.01 Ea | 32.75 ± 0.01 Fa | 32.72 ± 0.01 Ga | 32.71 ± 0.01 Ga | 32.71 ± 0.02 Ga | 32.71 ± 0.02 Ga | 32.71 ± 0.02 Ga | |
ΔE | 0 | 4.60 ± 0.01 Eb | 9.67 ± 0.01 Da | 13.35 ± 0.03 Cc | 23.20 ± 0.01 Ba | 26.91 ± 0.02 Aa | 26.80 ± 0.03 Aa | 26.82 ± 0.02 Aa | 26.80 ± 0.01 Aa | 26.79 ± 0.02 Aa | 26.79 ± 0.01 Aa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rostini, I.; Junianto; Warsiki, E. Designing Bio-Based Color Sensor from Myofibrillar-Protein-Based Edible Film Incorporated with Sappan Wood (Caesalpinia sappan L.) Extract for Smart Food Packaging. Appl. Sci. 2023, 13, 8205. https://doi.org/10.3390/app13148205
Rostini I, Junianto, Warsiki E. Designing Bio-Based Color Sensor from Myofibrillar-Protein-Based Edible Film Incorporated with Sappan Wood (Caesalpinia sappan L.) Extract for Smart Food Packaging. Applied Sciences. 2023; 13(14):8205. https://doi.org/10.3390/app13148205
Chicago/Turabian StyleRostini, Iis, Junianto, and Endang Warsiki. 2023. "Designing Bio-Based Color Sensor from Myofibrillar-Protein-Based Edible Film Incorporated with Sappan Wood (Caesalpinia sappan L.) Extract for Smart Food Packaging" Applied Sciences 13, no. 14: 8205. https://doi.org/10.3390/app13148205
APA StyleRostini, I., Junianto, & Warsiki, E. (2023). Designing Bio-Based Color Sensor from Myofibrillar-Protein-Based Edible Film Incorporated with Sappan Wood (Caesalpinia sappan L.) Extract for Smart Food Packaging. Applied Sciences, 13(14), 8205. https://doi.org/10.3390/app13148205