Active Nitrogen Fixation by Iron-Reducing Bacteria in Rice Paddy Soil and Its Further Enhancement by Iron Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Field and Soil Sampling
2.2. Soil Incubation
2.3. Quantification of 15N in Soil
2.4. Soil DNA Extraction for SIP Analysis
2.5. SIP Gradient Fractionation
2.6. qPCR of 16S rRNA and nifD Gene in SIP Gradient Fractions
2.7. 16S rRNA Amplicon Sequencing and Bioinformatic Analysis
2.8. Statistics
3. Results and Discussion
3.1. Influence of Fe Application on the Amount of Fixed Nitrogen in Soil
3.2. Influence of Fe Application on the Quantity of 16S rRNA and nifD Genes in Fractionated DNA
3.3. Influence of Fe Application on the Diazotrophic Communities in Soil
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gross, B.L.; Zhao, Z. Archaeological and genetic insights into the origins of domesticated rice. Proc. Natl. Acad. Sci. USA 2014, 111, 6190–6197. [Google Scholar] [CrossRef]
- Yanai, J.; Hirose, M.; Tanaka, S.; Sakamoto, K.; Nakao, A.; Dejbhimon, K.; Lattirasuvan, T.; Abe, S. Changes in paddy soil fertility in Thailand due to the Green Revolution during the last 50 years. Soil Sci. Plant Nutr. 2020, 66, 889–899. [Google Scholar] [CrossRef]
- Gu, J.; Yang, J. Nitrogen (N) transformation in paddy rice field: Its effect on N uptake and relation to improved N management. Crop Environ. 2022, 1, 7–14. [Google Scholar] [CrossRef]
- Sainju, U.M.; Ghimire, R.; Pradhan, G.P. Nitrogen fertilization I: Impact on crop, soil, and environment. In Nitrogen Fixation; Rigobelo, E.C., Serra, A.P., Eds.; IntechOpen Limited: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; and Zhang, F. Nitrogen fertilizer induced greenhouse gas emissions in China. Curr. Opin. Environ. Sustain. 2011, 3, 407–413. [Google Scholar]
- Ishii, S.; Ikeda, S.; Minamisawa, K.; Senoo, K. Nitrogen cycling in rice paddy environments: Past achievements and future challenges. Microbes Environ. 2011, 26, 282–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okumura, T. Rice production in unfertilized paddy field—Mechanism of grain production as estimated from nitrogen economy. Plant Prod. Sci. 2002, 5, 83–88. [Google Scholar] [CrossRef]
- Yoshida, T.; Ancajas, R.R. Nitrogen-fixing activity in upland and flooded rice fields. Soil Sci. Soc. Am. J. 1973, 37, 42–46. [Google Scholar] [CrossRef]
- Ladha, J.K.; Tirol-Padre, A.; Reddy, C.K.; Cassman, K.G.; Verma, S.; Powlson, D.S.; van Kessel, C.; de Richter, D.B.; Chakraborty, D.; Pathak, H. Global nitrogen budgets in cereals: A 50-year assessment for maize, rice, and wheat production systems. Sci. Rep. 2016, 6, 19355. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.L.; Zhang, M.; Tian, Y.H.; Zhao, M.; Zhang, B.W.; Zeng, K.; Zhao, M.; Yin, B. Urea deep placement in combination with Azolla for reducing nitrogen loss and improving fertilizer nitrogen recovery in rice field. Field Crops Res. 2018, 218, 141–149. [Google Scholar] [CrossRef]
- Roger, P.A.; Ladha, J.K. Biological N2 fixation in wetland rice fields: Estimation and contribution to nitrogen balance. Plant Soil. 1992, 141, 41–55. [Google Scholar] [CrossRef]
- Santi, C.; Bogusz, D.; Franche, C. Biological nitrogen fixation in non-legume plants. Ann. Bot. 2013, 111, 743–767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitousek, P.M.; Menge, D.N.L.; Reed, S.C.; Cleveland, C.C. Biological nitrogen fixation: Rates, patterns and ecological controls in terrestrial ecosystems. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masuda, Y.; Itoh, H.; Shiratori, Y.; Isobe, K.; Otsuka, S.; Senoo, K. Predominant but previously-overlooked prokaryotic drivers of reductive nitrogen transformation in paddy soils, revealed by metatranscriptomics. Microbes Environ. 2017, 32, 180–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovley, D.R.; Ueki, T.; Zhang, T.; Malvankar, N.S.; Shrestha, P.M.; Flanagan, K.A.; Aklujkar, M.; Butler, J.E.; Giloteaux, L.; Rotaru, A.E.; et al. Geobacter: The microbe electric’s physiology, ecology, and practical applications. Adv. Microb. Physiol. 2011, 59, 1–100. [Google Scholar] [PubMed]
- Wu, Q.; Sanford, R.A.; Löffler, F.E. Uranium(VI) reduction by Anaeromyxobacter dehalogenans strain 2CP-C. Appl. Environ. Microbiol. 2006, 72, 3608–3614. [Google Scholar] [CrossRef] [Green Version]
- Hori, T.; Müller, A.; Igarashi, Y.; Conrad, R.; Friedrich, M.W. Identification of iron-reducing microorganisms in anoxic rice paddy soil by 13C-acetate probing. ISME J. 2010, 4, 267–278. [Google Scholar] [CrossRef]
- Xu, Z.; Masuda, Y.; Hayakawa, C.; Ushijima, N.; Kawano, K.; Shiratori, Y.; Senoo, K.; Itoh, H. Description of three novel members in the family Geobacteraceae, Oryzomonas japonicum gen. nov., sp. nov., Oryzomonas sagensis sp. nov., and Oryzomonas ruber sp. nov. Microorganisms 2020, 8, 634. [Google Scholar] [CrossRef]
- Xu, Z.; Masuda, Y.; Itoh, H.; Ushijima, N.; Shiratori, Y.; Senoo, K. Geomonas oryzae gen. nov., sp. nov., Geomonas edaphica sp. nov., Geomonas ferrireducens sp. nov., Geomonas terrae sp. nov., Four ferric-reducing bacteria isolated from paddy soil, and reclassification of three species of the genus Geobacter as members of the genus Geomonas gen. nov. Front. Microbiol. 2019, 10, 2201. [Google Scholar]
- Xu, Z.; Masuda, Y.; Wang, X.; Ushijima, N.; Shiratori, Y.; Senoo, K.; Itoh, H. Genome-based taxonomic rearrangement of the order Geobacterales including the description of Geomonas azotofigens sp. nov. and Geomonas diazotrophica sp. nov. Front. Microbiol. 2021, 12, 737531. [Google Scholar] [CrossRef]
- Masuda, Y.; Yamanaka, H.; Xu, Z.; Shiratori, Y.; Aono, T.; Amachi, S.; Senoo, K.; Itoh, H. Diazotrophic Anaeromyxobacter isolates from soils. Appl. Environ. Microbiol. 2020, 86, e00956-20. [Google Scholar] [CrossRef]
- Itoh, H.; Xu, Z.; Masuda, Y.; Ushijima, N.; Hayakawa, C.; Shiratori, Y.; Senoo, K. Geomonas silvestris sp. nov., Geomonas paludis sp. nov. and Geomonas limicola sp. nov., isolated from terrestrial environments, and emended description of the genus Geomonas. Int. J. Syst. Evol. Microbiol. 2021, 71, 004607. [Google Scholar] [CrossRef] [PubMed]
- Itoh, H.; Xu, Z.; Mise, K.; Masuda, Y.; Ushijima, N.; Hayakawa, C.; Shiratori, Y.; Senoo, K. Anaeromyxobacter oryzae sp. nov., Anaeromyxobacter diazotrophicus sp. nov. and Anaeromyxobacter paludicola sp. nov., isolated from paddy soils. Int. J. Syst. Evol. Microbiol. 2022, 72, 005546. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Xu, Z.; Masuda, Y.; Wang, X.; Ushijima, N.; Shiratori, Y.; Senoo, K.; Itoh, H. Geomesophilobacter sediminis gen. nov., sp. nov., Geomonas propionica sp. nov. and Geomonas anaerohicana sp. nov., three novel members in the family Geobacterecace isolated from river sediment and paddy soil. Syst. Appl. Microbiol. 2021, 44, 126233. [Google Scholar] [CrossRef] [PubMed]
- Masuda, Y.; Shiratori, Y.; Ohba, H.; Ishida, T.; Takano, R.; Satoh, S.; Shen, W.; Gao, N.; Itoh, H.; Senoo, K. Enhancement of the nitrogen-fixing activity of paddy soils owing to iron application. Soil Sci. Plant Nutr. 2021, 67, 243–247. [Google Scholar] [CrossRef]
- Shen, W.; Long, Y.; Qiu, Z.; Gao, N.; Masuda, Y.; Itoh, H.; Senoo, K. Investigation of rice yields and critical N losses from paddy soil under different N fertilization rates with iron application. Int. J. Environ. Res. Public Health 2022, 19, 8707. [Google Scholar] [CrossRef]
- Vaario, L.M.; Sah, S.P.; Norisada, M.; Narimatsu, M.; Matsushita, N. Tricholoma matsutake may take more nitrogen in the organic form than other ectomycorrhizal fungi for its sporocarp development: The isotopic evidence. Mycorrhiza 2019, 29, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Angel, R.; Claus, P.; Conrad, R. Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME J. 2012, 6, 847–862. [Google Scholar] [CrossRef] [Green Version]
- Angel, R.; Panhölzl, C.; Gabriel, R.; Herbold, C.; Wanek, W.; Richter, A.; Eichorst, S.A.; Woebken, D. Application of stable-isotope labeling techniques for the detection of active diazotrophs. Environ. Microbiol. 2018, 20, 44–61. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, D.; Fujiyoshi, S.; Maruyama, F.; Goto, M.; Koyama, S.; Kanatani, J.-I.; Isobe, J.; Watahiki, M.; Sakatoku, A.; Kagaya, S.; et al. Size resolved characteristics of urban and suburban bacterial bioaerosols in Japan as assessed by 16S rRNA amplicon sequencing. Sci. Rep. 2020, 10, 12406. [Google Scholar] [CrossRef]
- Frøslev, T.G.; Kjøller, R.; Bruun, H.H.; Ejrnæs, R.; Brunbjerg, A.K.; Pietroni, C.; Hansen, A.J. Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates. Nat. Commun. 2017, 8, 1188. [Google Scholar] [CrossRef] [Green Version]
- Waite, D.W.; Chuvochina, M.; Pelikan, C.; Parks, D.H.; Yilmaz, P.; Wagner, M.; Loy, A.; Naganuma, T.; Nakai, R.; Whitman, B.W.; et al. Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. Int. J. Syst. Evol. Microbiol. 2020, 70, 5972–6016. [Google Scholar] [CrossRef] [PubMed]
- Kolde, R. pheatmap: Pretty Heatmaps, R Package Version 1.0.8. Available online: https://CRAN.R-project.org/package=pheatmap (accessed on 15 February 2022).
- Kondo, M.; Yasuda, M. Effects of temperature, water regime, light, and soil properties on 15N2 fixation associated with decomposition of organic matter in paddy soils. JARQ-Jpn. Agric. Res. Q. 2003, 37, 113–119. [Google Scholar] [CrossRef]
- Mise, K.; Masuda, Y.; Senoo, K.; Itoh, H. Undervalued Pseudo-nifH sequences in public databases distort metagenomic insights into biological nitrogen fixers. Msphere 2021, 6, e0078521. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Liu, L.; Sun, D.; Ren, N.; Lee, D.J. Isolation of Fe(III)-reducing fermentative bacterium Bacteroides sp. W7 in the anode suspension of a microbial electrolysis cell (MEC). Int. J. Hydrogen Energy 2010, 35, 3178–3182. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Masuda, Y.; Xu, Z.; Shiratori, Y.; Ohba, H.; Senoo, K. Active Nitrogen Fixation by Iron-Reducing Bacteria in Rice Paddy Soil and Its Further Enhancement by Iron Application. Appl. Sci. 2023, 13, 8156. https://doi.org/10.3390/app13148156
Zhang Z, Masuda Y, Xu Z, Shiratori Y, Ohba H, Senoo K. Active Nitrogen Fixation by Iron-Reducing Bacteria in Rice Paddy Soil and Its Further Enhancement by Iron Application. Applied Sciences. 2023; 13(14):8156. https://doi.org/10.3390/app13148156
Chicago/Turabian StyleZhang, Zhengcheng, Yoko Masuda, Zhenxing Xu, Yutaka Shiratori, Hirotomo Ohba, and Keishi Senoo. 2023. "Active Nitrogen Fixation by Iron-Reducing Bacteria in Rice Paddy Soil and Its Further Enhancement by Iron Application" Applied Sciences 13, no. 14: 8156. https://doi.org/10.3390/app13148156