Hydrodynamic Modification in Channels Densely Populated with Aquaculture Farms
Abstract
:Featured Application
Abstract
1. Introduction
2. Methods
2.1. Simulation Methodology
2.2. Local CFD Model: Small-Scale Circulation of Channel and Hydrodynamics of Aquaculture Farms
2.3. Fish Farm Modelling
2.4. Modelling Mussel Drop Farms
3. Simulation
3.1. Case Description
3.2. ADCP Measurements
3.3. Regional Model
3.4. Local CFD Model
4. Results
5. Discussion
6. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2020. In Sustainability in Action; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Chavez, C.; Dresdner, J.; Figueroa, Y.; Quiroga, M. Main issues and challenges for sustainable development of salmon farming in Chile: A socio-economic perspective. Rev. Aquac. 2019, 11, 403–421. [Google Scholar] [CrossRef] [Green Version]
- Subrei. Informe mensual de comercio exterior, febrero 2021. In Subsecretarıa de Relaciones Económicas Internacionales de Chile; Centro de Publicaciones del Ministerio de Industria, Comercio y Turismo: Madrid, Spain, 2021. [Google Scholar]
- Soto, D.; Leon-Munoz, J.; Dresdner, J.; Luengo, C.; Tapia, F.J.; Garreaud, R. Salmon farming vulnerability to climate change in southern Chile: Understanding the biophysical, socioeconomic and governance links. Rev. Aquac. 2019, 11, 354–374. [Google Scholar] [CrossRef] [Green Version]
- Dresdner, J.; Chávez, C.; Estay, M.; González, N.; Salazar, C.; Santis, O.; Figueroa, Y.; Lafon, A.; Luengo, C.; Quezada, F. Evaluación socioeconómica del sector salmonicultor, en base a las nuevas exigencias de la ley general de pesca y acuicultura. Inf. Final. Proy. FIPA 2016, 42, 351. [Google Scholar]
- Quinones, R.A.; Fuentes, M.; Montes, R.M.; Soto, D.; Leon-Munoz, J. Environmental issues in Chilean salmon farming: A review. Rev. Aquac. 2019, 11, 375–402. [Google Scholar] [CrossRef]
- Maroni, K. Monitoring and regulation of marine aquaculture in Norway. J. Appl. Ichthyol. 2000, 16, 192–195. [Google Scholar] [CrossRef]
- Tacon, A.G.; Metian, M.; Turchini, G.M.; de Silva, S.S. Responsible aquaculture and trophic level implications to global fish supply. Rev. Fish. Sci. 2010, 18, 94–105. [Google Scholar] [CrossRef] [Green Version]
- Klinger, D.; Naylor, R. Searching for solutions in aquaculture: Charting a sustainable course. Annu. Rev. Environ. Resour. 2012, 37, 247–276. [Google Scholar] [CrossRef] [Green Version]
- Stickney, R.R.; McVey, J.P. Responsible Marine Aquaculture; CABI: Wallingford, UK, 2002. [Google Scholar]
- Tett, P. Fish farm wastes in the ecosystem. In Aquaculture in the Ecosystem; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–46. [Google Scholar]
- Svåsand, T.; Crosetti, D.; García-Vázquez, E.; Verspoor, E. Genetic impact of aquaculture activities on native populations. In Genimpact Final Scientific Report (EU Contract n. RICA-CT-2005-022802); 2007; p. 176. Available online: https://www.vliz.be/imisdocs/publications/318461.pdf (accessed on 20 March 2023).
- Chevassus-au Louis, B.; Lazard, J. Perspectives pour la recherche biotechnique en pisciculture. Cah. Agric. 2009, 18, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Lazard, J.; Leveque, C. Introductions et transferts d’especes de poissons d’eau douce. Cah. Agric. 2009, 18, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Naylor, R.L.; Goldburg, R.J.; Primavera, J.H.; Kautsky, N.; Beveridge, M.; Clay, J.; Folke, C.; Lubchenco, J.; Mooney, H.; Troell, M. Effect of aquaculture on world fish supplies. Nature 2000, 405, 1017–1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tacon, A.G.; Metian, M. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture 2008, 285, 146–158. [Google Scholar] [CrossRef]
- Buschmann, A.H.; Riquelme, V.A.; Hernandez-Gonzalez, M.C.; Varela, D.; Jiménez, J.E.; Henriquez, L.A.; Vergara, P.A.; Guınez, R.; Filun, L. A review of the impacts of salmonid farming on marine coastal ecosystems in the southeast pacific. ICES J. Mar. Sci. 2006, 63, 1338–1345. [Google Scholar] [CrossRef]
- Fortt, A.; Cabello, F.; Buschmann, A. Residuos de tetraciclina y quinolonas en peces silvestres en una zona costera donde se desarrolla la acuicultura del salmón en chile. Rev. Chil. Infectología 2007, 24, 14–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miranda, C.D.; Zemelman, R. Bacterial resistance to oxytetracycline in chilean salmon farming. Aquaculture 2002, 212, 31–47. [Google Scholar] [CrossRef]
- Cabello, F.C. Antibiotics and aquaculture in Chile: Implications for human and animal health. Rev. Med. Chile 2004, 132, 1001–1006. [Google Scholar]
- Cabello, F.C. Heavy use of prophylactic antibiotics in aquaculture: A growing problem for human and animal health and for the environment. Environ. Microbiol. 2006, 8, 1137–1144. [Google Scholar] [CrossRef]
- Miranda, C.D.; Rojas, R. Occurrence of florfenicol resistance in bacteria associated with two Chilean salmon farms with different history of antibacterial usage. Aquaculture 2007, 266, 39–46. [Google Scholar] [CrossRef]
- Sub-secretary of fisheries, 2009a. Resolution n° 1896 exempt. Establishes groupings of salmonid aquaculture concessions in the X and XI regions. Chilean ministry of economy, promotion and tourism. Last modification December 2012. Available online: https://bcn.cl/2wtjs (accessed on 20 March 2023).
- Tecklin, D. Sensing the limits of fixed marine property rights in changing coastal ecosystems: Salmon aquaculture concessions, crises, and governance challenges in southern Chile. J. Int. Wildl. Law Policy 2016, 19, 284–300. [Google Scholar] [CrossRef]
- Sobarzo, M.; Bravo, L.; Iturra, C.; Troncoso, A.; Riquelme, R.; Campos, P.; Agurto, C. Hydrodynamics of a channel occupied by the aquaculture industry in southern Chile: Implications for connectivity between farms. Aquac. Environ. Interact. 2018, 10, 291–307. [Google Scholar] [CrossRef] [Green Version]
- Manikandan, P.; Rao, Y.R.S. Mapping and change detection of water bodies in the godavari delta using geospatial technology. ADBU J. Eng. Technol. 2022, 11, 4. [Google Scholar]
- Singh, S.S.; Parida, B.R. Satellite-based identification of aquaculture farming over coastal areas around bhitarkanika, odisha using a neural net-work method. Multidiscip. Digit. Publ. Inst. Proc. 2018, 2, 331. [Google Scholar]
- Babu, P.M.; Sankar, G.; Sreenivasulu, V. Impacts of aquaculture on water resources utilization and land resources of krishna district using with remote sensing and gis techniques. Int. J. Eng. Trends Technol. 2013, 4, 3201–3206. [Google Scholar]
- Cranford, P.J.; Kamermans, P.; Krause, G.; Mazurie, J.; Buck, B.H.; Dolmer, P.; Fraser, D.; Van Nieuwenhove, K.; Francis, X.; Sanchez-Mata, A.; et al. An ecosystem-based approach and management framework for the integrated evaluation of bivalve aquaculture impacts. Aquac. Environ. Interact. 2012, 2, 193–213. [Google Scholar] [CrossRef] [Green Version]
- Reid, G.K.; Lefebvre, S.; Filgueira, R.; Robinson, S.M.; Broch, O.J.; Dumas, A.; Chopin, T.B. Performance measures and models for open-water integrated multi-trophic aquaculture. Rev. Aquac. 2020, 12, 47–75. [Google Scholar] [CrossRef]
- Stigebrandt, A.; Aure, J.; Ervik, A.; Hansen, P.K. Regulating the local environmental impact of intensive marine fish farming: Iii. a model for estimation of the holding capacity in the modelling–ongrowing fish farm–monitoring system. Aquaculture 2004, 234, 239–261. [Google Scholar] [CrossRef]
- Sandvik, A.D.; Bjørn, P.A.; Adlandsvik, B.; Asplin, L.; Skarhamar, J.; Johnsen, I.A.; Myksvoll, M.; Skogen, M.D. Toward a model-based prediction system for salmon lice infestation pressure. Aquac. Environ. Interact. 2016, 8, 527–542. [Google Scholar] [CrossRef] [Green Version]
- Myksvoll, M.S.; Sandvik, A.D.; Albretsen, J.; Asplin, L.; Johnsen, I.A.; Karlsen, Ø.; Kristensen, N.M.; Melsom, A.; Skardhamar, J.; Adlandsvik, B. Evaluation of a national operational salmon lice monitoring system—From physics to fish. PLoS ONE 2018, 13, e0201338. [Google Scholar] [CrossRef] [Green Version]
- Cromey, C.J.; Nickell, T.D.; Black, K.D. Depomod modelling the deposition and biological effects of waste solids from marine cage farms. Aquaculture 2002, 214, 211–239. [Google Scholar] [CrossRef]
- Broch, O.J.; Daae, R.L.; Ellingsen, I.H.; Nepstad, R.; Bendiksen, E.A.; Reed, J.L.; Senneset, G. Spatiotemporal dispersal and deposition of fish farm wastes: A model study from central Norway. Front. Mar. Sci. 2017, 4, 199. [Google Scholar] [CrossRef] [Green Version]
- Woodcock, S.; Strohmeier, T.; Strand, Ø.; Olsen, S.; Bannister, R. Mobile epibenthic fauna consume organic waste from coastal fin-fish aquaculture. Mar. Environ. Res. 2018, 137, 16–23. [Google Scholar] [CrossRef]
- Sub-Secretary of Fisheries, 2009b. Resolution n° 3612 Exempt. Approves Resolution that Establishes the Methodologies to Elaborate the Preliminary Site Characterization (CPS) and the Environmental Information (INFA). Chilean Ministry of Economy, Promotion and Tourism. Last modification 25 October 2014. Available online: https://bcn.cl/2f86m (accessed on 20 March 2023).
- Shchepetkin, A.F.; McWilliams, J.C. The regional oceanic modeling system (roms): A split-explicit, free-surface, topography-following- coordinate oceanic model. Ocean. Model. 2005, 9, 347–404. [Google Scholar] [CrossRef]
- Debreu, L.; Marchesiello, P.; Penven, P.; Cambon, G. Two-way nesting in split-explicit ocean models: Algorithms, implementation and validation. Ocean. Model. 2012, 49, 1–21. [Google Scholar] [CrossRef]
- Gr, C.; Liu, H.; Beardsley, R.C. An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: Application to coastal ocean and estuaries. J. Atmos. Ocean. Technol. 2003, 20, 159–186. [Google Scholar]
- Graham, D.N.; Butts, M.B. Flexible, integrated watershed modelling with mike she. Watershed Model. 2005, 849336090, 245–272. [Google Scholar]
- Fox-Kemper, B.; Adcroft, A.; Böning, C.W.; Chassignet, E.P.; Curchitser, E.; Danabasoglu, G.; Eden, C.; England, M.H.; Gerdes, R.; Greatbatch, R.J.; et al. Challenges and prospects in ocean circulation models. Front. Mar. Sci. 2019, 6, 65. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Cuthbertson, A.; Gualtieri, C.; Shao, D. A review on mariculture effluent: Characterization and management tools. Water 2020, 12, 2991. [Google Scholar] [CrossRef]
- Pleyagamoorthy, S.K.; Ku, H.; Fringer, O.B.; Chiu, A.; Naylor, R.L.; Koseff, J.R. Numerical modeling of aquaculture dissolved waste transport in a coastal embayment. Environ. Fluid Mech. 2011, 11, 329–352. [Google Scholar]
- Plew, D.R. Shellfish farm-induced changes to tidal circulation in an embayment, and implications for seston depletion. Aquac. Environ. Interact. 2011, 1, 201–214. [Google Scholar] [CrossRef] [Green Version]
- O’Donncha, F.; Hartnett, M.; Nash, S. Physical and numerical investigation of the hydrodynamic implications of aquaculture farms. Aquac. Eng. 2013, 52, 14–26. [Google Scholar] [CrossRef]
- Cornejo, P.; Sepúlveda, H.H.; Gutiérrez, M.H.; Olivares, G. Numerical studies on the hydrodynamic effects of a salmon farm in an idealized environment. Aquaculture 2014, 430, 195–206. [Google Scholar] [CrossRef]
- Wu, Y.; Chaffey, J.; Law, B.; Greenberg, D.A.; Drozdowski, A.; Page, F.; Haigh, S. A three-dimensional hydrodynamic model for aquaculture: A case study in the bay of fundy. Aquac. Environ. Interact. 2014, 5, 235–248. [Google Scholar] [CrossRef] [Green Version]
- Winthereig-Rasmussen, H.; Simonsen, K.; Patursson, Ø. Flow through fish farming sea cages: Comparing computational fluid dynamics simulations with scaled and full-scale experimental data. Ocean. Eng. 2016, 124, 21–31. [Google Scholar] [CrossRef]
- Herrera, J.; Cornejo, P.; Sepúlveda, H.H.; Artal, O.; Quinones, R.A. A novel approach to assess the hydrodynamic effects of a salmon farm in a Patagonian channel: Coupling between regional ocean modeling and high resolution les simulation. Aquaculture 2018, 495, 115–129. [Google Scholar] [CrossRef]
- Cornejo, P.; Guerrero, N.M.; Montes, R.M.; Quinones, R.A.; Sepúlveda, H.H. Hydrodynamic effect of biofouling in fish cage aquaculture netting. Aquaculture 2020, 526, 735367. [Google Scholar] [CrossRef]
- Broch, O.J.; Klebert, P.; Michelsen, F.A.; Alver, M.O. Multiscale modelling of cage effects on the transport of effluents from open aquaculture systems. PLoS ONE 2020, 15, e0228502. [Google Scholar] [CrossRef] [Green Version]
- Artal, O.; Pizarro, O.; Sepúlveda, H.H. The impact of spring-neap tidal-stream cycles in tidal energy assessments in the Chilean inland sea. Renew. Energy 2019, 139, 496–506. [Google Scholar] [CrossRef]
- Cornejo, P.; Sepúlveda, H. Computational fluid dynamics modelling of a midlatitude small scale upper ocean front. J. Appl. Fluid Mech. 2016, 9, 1851–1863. [Google Scholar] [CrossRef]
- Shur, M.L.; Spalart, P.R.; Strelets, M.K.; Travin, A.K. A hybrid rans-les approach with delayed-des and wall-modelled les capabilities. Int. J. Heat Fluid Flow 2008, 29, 1638–1649. [Google Scholar] [CrossRef]
- Smagorinsky, J. General circulation experiments with the primitive equations: I. the basic experiment. Mon. Weather. Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
- Piomelli, U.; Moin, P.; Ferziger, J.H. Model consistency in large eddy simulation of turbulent channel flows. Phys. Fluids 1988, 31, 1884–1891. [Google Scholar] [CrossRef]
- Gansel, L.C.; McClimans, T.A.; Myrhaug, D. Average flow inside and around fish cages with and without fouling in a uniform flow. J. Offshore Mech. Arct. Eng. 2012, 134, 041201. [Google Scholar] [CrossRef]
- Swift, M.R.; Fredriksson, D.W.; Unrein, A.; Fullerton, B.; Patursson, O.; Baldwin, K. Drag force acting on biofouled net panels. Aquac. Eng. 2006, 35, 292–299. [Google Scholar] [CrossRef]
- Tsukrov, I.; Drach, A.; DeCew, J.; Swift, M.R.; Celikkol, B. Characterization of geometry and normal drag coefficients of copper nets. Ocean. Eng. 2011, 38, 1979–1988. [Google Scholar] [CrossRef]
- Xu, T.J.; Dong, G.H. Numerical simulation of the hydrodynamic behavior of mussel farm in currents. Ships Offshore Struct. 2018, 13, 835–846. [Google Scholar] [CrossRef]
- Sandwell, D.T.; Gille, S.; Smith, W. Bathymetry from Space: Oceanography, Geophysics, and Climate; Geoscience Professional Services: Bethesda, MD, USA, 2002. [Google Scholar]
- Antonov, J.I.; Seidov, D.; Boyer, T.P.; Locarnini, R.A.; Mishonov, A.V.; Garcia, H.E.; Baranova, O.K.; Zweng, M.M.; Johnson, D.R. World Ocean Atlas 2009; Levitus, S., Ed.; NOAA Atlas NESDIS 69; U.S. Government Printing Office: Washington, DC, USA, 2010; Volume 2, p. 184. Available online: https://accession.nodc.noaa.gov/0094866 (accessed on 30 March 2023).
- Locarnini, R.A.; Mishonov, A.V.; Antonov, J.I.; Boyer, T.P.; Garcia, H.E.; Baranova, O.K.; Zweng, M.M.; Johnson, D.R. World Ocean Atlas 2009; Levitus, S., Ed.; NOAA Atlas NESDIS 68; U.S. Government Printing Office: Washington, DC, USA, 2010; Volume 1, p. 184. Available online: https://accession.nodc.noaa.gov/0094866 (accessed on 30 March 2023).
- Egbert, G.D.; Erofeeva, S.Y. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Technol. 2002, 19, 183–204. [Google Scholar] [CrossRef]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.K.; Hnilo, J.; Fiorino, M.; Potter, G. Ncep–doe amip-ii reanalysis (r-2). Bull. Am. Meteorol. Soc. 2002, 83, 1631–1644. [Google Scholar] [CrossRef] [Green Version]
- Quezada, F.; Dresdner, J. What can we learn from a sanitary crisis? the Isa virus and market prices. Aquac. Econ. Manag. 2017, 21, 211–240. [Google Scholar] [CrossRef]
- Knapp, G. Economic potential for US offshore aquaculture: An analytical approach. Offshore Aquac. United States Econ. Consid. Implic. Oppor. 2008, 15, 65. [Google Scholar]
- Martinez-Porchas, M.; Martinez-Cordova, L.R. World aquaculture: Environmental impacts and troubleshooting alternatives. Sci. World J. 2012, 2012, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Nilsen, A.; Hagen, Ø.; Johnsen, C.A.; Prytz, H.; Zhou, B.; Nielsen, K.V.; Bjørnevik, M. The importance of exercise: Increased water velocity improves growth of Atlantic salmon in closed cages. Aquaculture 2019, 501, 537–546. [Google Scholar] [CrossRef]
- Ytrestøyl, T.; Takle, H.; Kolarevic, J.; Calabrese, S.; Timmerhaus, G.; Rosseland, B.O.; Teien, H.C.; Nilsen, T.O.; Handeland, S.O.; Stefansson, S.O.; et al. Performance and welfare of Atlantic salmon, salmo salar l. post-smolts in recirculating aquaculture systems: Importance of salinity and water velocity. J. World Aquac. Soc. 2020, 51, 373–392. [Google Scholar] [CrossRef] [Green Version]
- Waldrop, T.; Summerfelt, S.; Mazik, P.; Good, C. The effects of swimming exercise and dissolved oxygen on growth performance, fin condition and precocious maturation of early-rearing Atlantic salmon salmo salar. Aquac. Res. 2018, 49, 801–808. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cornejo, P.; Guerrero, N.; Sobarzo, M.; Sepúlveda, H.H. Hydrodynamic Modification in Channels Densely Populated with Aquaculture Farms. Appl. Sci. 2023, 13, 7750. https://doi.org/10.3390/app13137750
Cornejo P, Guerrero N, Sobarzo M, Sepúlveda HH. Hydrodynamic Modification in Channels Densely Populated with Aquaculture Farms. Applied Sciences. 2023; 13(13):7750. https://doi.org/10.3390/app13137750
Chicago/Turabian StyleCornejo, Pablo, Nicolás Guerrero, Marcus Sobarzo, and Héctor H. Sepúlveda. 2023. "Hydrodynamic Modification in Channels Densely Populated with Aquaculture Farms" Applied Sciences 13, no. 13: 7750. https://doi.org/10.3390/app13137750
APA StyleCornejo, P., Guerrero, N., Sobarzo, M., & Sepúlveda, H. H. (2023). Hydrodynamic Modification in Channels Densely Populated with Aquaculture Farms. Applied Sciences, 13(13), 7750. https://doi.org/10.3390/app13137750