Study on the Surface Morphology of Thermochromic Rf-Sputtered VO2 Films Using Temperature-Dependent Atomic Force Microscopy
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kiria, P.; Hyett, G.; Binionsa, R. Solid State Thermochromic Materials. Adv. Mater. Lett. 2010, 1, 86–105. [Google Scholar] [CrossRef]
- Kanu, S.S.; Binions, R. Thin Films for Solar Control Applications. Proc. R. Soc. A Math. Phys. Eng. Sci. 2010, 466, 19–44. [Google Scholar] [CrossRef]
- Saeli, M.; Piccirillo, C.; Warwick, M.E.A.; Binions, R. Thermochromic Thin Films: Synthesis, Properties and Energy Consumption Modelling; 2013; pp. 736–746. Available online: https://www.semanticscholar.org/paper/Thermochromic-Thin-Films%3A-Synthesis%2C-Properties-and-Saeli-Piccirillo/6a5b7c7692ed824d1219b4e008c5032b2eba5aa2#extracted (accessed on 23 June 2023).
- Gao, Y.; Kang, L.; Chen, Z.; Luo, H. Solution Processing of Nanoceramic VO2 Thin Films for Application to Smart Windows. In Nanofabrication. 2011. Available online: https://cdn.intechopen.com/pdfs/25302/InTech-Solution_processing_of_nanoceramic_vo2_thin_films_for_application_to_smart_windows.pdf (accessed on 23 June 2023).
- Kamalisarvestani, M.; Saidur, R.; Mekhilef, S.; Javadi, F.S. Performance, Materials and Coating Technologies of Thermochromic Thin Fi Lms on Smart Windows. Renew. Sustain. Energy Rev. 2013, 26, 353–364. [Google Scholar] [CrossRef]
- Li, M.; Magdassi, S.; Gao, Y.; Long, Y. Hydrothermal Synthesis of VO2 Polymorphs: Advantages, Challenges and Prospects for the Application of Energy Efficient Smart Windows. Small 2017, 13, 1701147. [Google Scholar] [CrossRef]
- Gagaoudakis, E.; Aperathitis, E.; Binas, V.; Koudoumas, E.; Siderakis, K.; Kiriakidis, G. Study of Thermochromic VO2 Material as Thermal Switch for Power Lines. In Proceedings of the 2016 51st International Universities Power Engineering Conference, UPEC 2016, Coimbra, Portugal, 6–9 September 2016; Volume 2017, pp. 1–4. [Google Scholar]
- Dahal, K.; Zhang, Q.; Wang, Y.; Mishra, I.K.; Ren, Z. V-VO2 Core-Shell Structure for Potential Thermal Switching. RSC Adv. 2017, 7, 33775–33781. [Google Scholar] [CrossRef]
- Liang, J.; Li, W.; Liu, J.; Hu, M. Room Temperature CH4 Sensing Properties of Au Decorated VO2 Nanosheets. Mater. Lett. 2016, 184, 92–95. [Google Scholar] [CrossRef]
- Evans, G.P.; Powell, M.J.; Johnson, I.D.; Howard, D.P.; Bauer, D.; Darr, J.A.; Parkin, I.P. Room Temperature Vanadium Dioxide–Carbon Nanotube Gas Sensors Made via Continuous Hydrothermal Flow Synthesis. Sens. Actuators B Chem. 2018, 255, 1119–1129. [Google Scholar] [CrossRef]
- Coy, H.; Cabrera, R.; Sepúlveda, N.; Fernández, F.E. Optoelectronic and All-Optical Multiple Memory States in Vanadium Dioxide. J. Appl. Phys. 2010, 108, 113115. [Google Scholar] [CrossRef]
- Zouini, M.; Chaib, A.B.; Mdaa, A.; el Khattabi, E.M. Information Restitution in the Optical Memories Using a Thin Layer of the Vanadium Dioxide. J. Eng. Sci. Technol. Rev. 2018, 11, 26–34. [Google Scholar] [CrossRef]
- Morin, F.J. Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature. Phys. Rev. Lett. 1959, 3, 34–36. [Google Scholar] [CrossRef]
- Granqvist, C.G. Recent Progress in Thermochromics and Electrochromics: A Brief Survey. Thin Solid Film. 2016, 614, 90–96. [Google Scholar] [CrossRef]
- Kang, M.; Kim, S.W.; Ryu, J.W.; Noh, T. Optical Properties for the Mott Transition in VO2. AIP Adv. 2012, 2, 012168. [Google Scholar] [CrossRef]
- Zylbersztejn, A.; Mott, N.F. Metal-Insulator Transition in Vanadium Dioxide. Phys. Rev. B 1975, 11, 4383–4395. [Google Scholar] [CrossRef]
- Wentzcovitch, R.M.; Schulz, W.W.; Allen, P.B. VO2: Peierls or Mott-Hubbard? A View from Band Theory. Phys. Rev. Lett. 1994, 72, 3389–3392. [Google Scholar] [CrossRef]
- Mlyuka, N.R.; Niklasson, G.A.; Granqvist, C.G. Mg Doping of Thermochromic VO2 Films Enhances the Optical Transmittance and Decreases the Metal-Insulator Transition Temperature. Appl. Phys. Lett. 2009, 95, 171909. [Google Scholar] [CrossRef]
- Liang, Z.; Zhao, L.; Meng, W.; Zhong, C.; Wei, S.; Dong, B.; Xu, Z.; Wan, L.; Wang, S. Tungsten-Doped Vanadium Dioxide Thin Films as Smart Windows with Self-Cleaning and Energy-Saving Functions. J. Alloys Compd. 2017, 694, 124–131. [Google Scholar] [CrossRef]
- Li, D.; Li, M.; Pan, J.; Luo, Y.; Wu, H.; Zhang, Y.; Li, G. Hydrothermal Synthesis of Mo-Doped VO2/TiO2 Composite Nanocrystals with Enhanced Thermochromic Performance. ACS Appl. Mater. Interfaces 2014, 6, 6555–6561. [Google Scholar] [CrossRef]
- Chiu, T.; Tonooka, K.; Kikuchi, N. In Fl Uence of Oxygen Pressure on the Structural, Electrical and Optical Properties of VO2 Thin Fi Lms Deposited on ZnO/Glass Substrates by Pulsed Laser Deposition. Thin Solid Film. 2010, 518, 7441–7444. [Google Scholar] [CrossRef]
- Guo, Y.X.; Liu, Y.F.; Zou, C.W.; Qi, Z.M.; Wang, Y.Y.; Xu, Y.Q.; Wang, X.L.; Zhang, F.; Zhou, R. Oxygen Pressure Induced Structure, Morphology and Phase-Transition for VO2/c-Sapphire Films by PLD. Appl. Phys. A Mater. Sci. Process. 2014, 115, 1245–1250. [Google Scholar] [CrossRef]
- Koo, H.; Yoon, S.; Kwon, O.J.; Ko, K.E.; Shin, D.; Bae, S.H.; Chang, S.H.; Park, C. Effect of Lattice Misfit on the Transition Temperature of VO2 Thin Film. J. Mater. Sci. 2012, 47, 6397–6401. [Google Scholar] [CrossRef]
- Cui, Y.; Ramanathan, S. Substrate Effects on Metal-Insulator Transition Characteristics of Rf-Sputtered Epitaxial VO2 Thin Films. J. Vac. Sci. Technol. A Vac. Surf. Film. 2011, 29, 041502. [Google Scholar] [CrossRef]
- Outón, J.; Casas-Acuña, A.; Domínguez, M.; Blanco, E.; Delgado, J.J.; Ramírez-del-Solar, M. Novel Laser Texturing of W-Doped VO2 Thin Film for the Improvement of Luminous Transmittance in Smart Windows Application. Appl. Surf. Sci. 2023, 608, 155180. [Google Scholar] [CrossRef]
- Zhang, L.; Xia, F.; Yao, J.; Zhu, T.; Xia, H.; Yang, G.; Liu, B.; Gao, Y. Facile Synthesis, Formation Mechanism and Thermochromic Properties of W-Doped VO2(M) Nanoparticles for Smart Window Applications. J. Mater. Chem. C 2020, 8, 13396–13404. [Google Scholar] [CrossRef]
- Wrledt, H.A. The O-V (Oxygen-Vanadium) System. Bull. Alloy Phase Diagr. 1989, 10, 271–277. [Google Scholar] [CrossRef]
- Dai, J.; Wang, X.; He, S.; Huang, Y.; Yi, X. Low Temperature Fabrication of VOx Thin Films for Uncooled IR Detectors by Direct Current Reactive Magnetron Sputtering Method. Infrared Phys. Technol. 2008, 51, 287–291. [Google Scholar] [CrossRef]
- Miyazaki, H.; Yasui, I. Effect of Buffer Layer on VO x Film Fabrication by Reactive RF Sputtering. Appl. Surf. Sci. 2006, 252, 8367–8370. [Google Scholar] [CrossRef]
- Zhu, B.; Tao, H.; Zhao, X. Effect of Buffer Layer on Thermochromic Performances of VO2 Films Fabricated by Magnetron Sputtering. Infrared Phys. Technol. 2016, 75, 22–25. [Google Scholar] [CrossRef]
- Koo, H.; Xu, L.; Ko, K.; Ahn, S.; Chang, S.; Park, C. Effect of Oxide Buffer Layer on the Thermochromic Properties of VO2 Thin Films. J. Mater. Eng. Perform. 2013, 22, 3967–3973. [Google Scholar] [CrossRef]
- Panagopoulou, M.; Gagaoudakis, E.; Aperathitis, E.; Michail, I.; Kiriakidis, G.; Tsoukalas, D.; Raptis, Y.S. The Effect of Buffer Layer on the Thermochromic Properties of Undoped Radio Frequency Sputtered VO2 Thin Films. Thin Solid Film. 2015, 594, 310–315. [Google Scholar] [CrossRef]
- Li, S.Y.; Namura, K.; Suzuki, M.; Niklasson, G.A.; Granqvist, C.G. Thermochromic VO2 Nanorods Made by Sputter Deposition: Growth Conditions and Optical Modeling. J. Appl. Phys. 2013, 114, 033516. [Google Scholar] [CrossRef]
- Jin, P.; Yoshimura, K.; Tanemura, S.; Jin, P.; Yoshimura, K.; Tanemura, S. Dependence of Microstructure and Thermochromism on Substrate Temperature for Sputter-Deposited VO2 Epitaxial Films Dependence of Microstructure and Thermochromism on Substrate Temperature for Sputter-Deposited VO2 Epitaxial Films. J. Vac. Sci. Technol. A 1997, 15, 1113–1117. [Google Scholar] [CrossRef]
- Vernardou, D.; Louloudakis, D.; Spanakis, E.; Katsarakis, N.; Koudoumas, E. Thermochromic Amorphous VO2 Coatings Grown by APCVD Using a Single-Precursor. Sol. Energy Mater. Sol. Cells 2014, 128, 36–40. [Google Scholar] [CrossRef]
- Wu, J.; Huang, W.; Shi, Q.; Cai, J.; Zhao, D.; Zhang, Y.; Yan, J. Effect of Annealing Temperature on Thermochromic Properties of Vanadium Dioxide Thin Films Deposited by Organic Sol-Gel Method. Appl. Surf. Sci. 2013, 268, 556–560. [Google Scholar] [CrossRef]
- Alie, D.; Gedvilas, L.; Wang, Z.; Tenent, R.; Engtrakul, C.; Yan, Y.; Shaheen, S.E.; Dillon, A.C.; Ban, C. Direct Synthesis of Thermochromic VO2 through Hydrothermal Reaction. J. Solid State Chem. 2014, 212, 237–241. [Google Scholar] [CrossRef]
- Chiu, T.W.; Hong, R.T.; Tonooka, K.; Kikuchi, N. Microstructure of Orientation Controlled VO2 Thin Films via ZnO Buffer. Thin Solid Film. 2013, 529, 119–122. [Google Scholar] [CrossRef]
- Panagopoulou, M.; Gagaoudakis, E.; Boukos, N.; Aperathitis, E.; Kiriakidis, G.; Tsoukalas, D.; Raptis, Y.S. Thermochromic Performance of Mg-Doped VO2 Thin Films on Functional Substrates for Glazing Applications. Sol. Energy Mater. Sol. Cells 2016, 157, 1004–1010. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, K.; Li, Y.; Liu, Y.; Zhu, M.; Zhong, A.; Cai, X.; Fan, P.; Lv, W. Employing TiO2 Buffer Layer to Improve VO2 Film Phase Transition Performance and Infrared Solar Energy Modulation Ability. J. Alloys Compd. 2016, 684, 719–725. [Google Scholar] [CrossRef]
- Bleu, Y.; Bourquard, F.; Poulet, A.; Misdanitis, K.; Jamon, D.; Loir, A.S.; Garrelie, F.; Donnet, C. Thermochromic Properties of BN/VO2/BN Trilayer Films with Low Phase Transition Temperature and High Hysteresis Width. Ceram. Int. 2022, 49, 13542–13547. [Google Scholar] [CrossRef]
- Kim, H.; Slusar, T.V.; Wulferding, D.; Yang, I.; Cho, J.-C.; Lee, M.; Choi, H.C.; Jeong, Y.H.; Kim, H.-T.; Kim, J. Direct Observation of the M2 Phase with Its Mott Transition in a VO2 Film. Appl. Phys. Lett. 2016, 109, 233104. [Google Scholar] [CrossRef]
- Gagaoudakis, E.; Aperathitis, E.; Michail, G.; Panagopoulou, M.; Katerinopoulou, D.; Binas, V.; Raptis, Y.S.; Kiriakidis, G. Low-Temperature Rf Sputtered VO2 Thin Films as Thermochromic Coatings for Smart Glazing Systems. Sol. Energy 2018, 165, 115–121. [Google Scholar] [CrossRef]
- Gagaoudakis, E.; Aperathitis, E.; Michail, G.; Kiriakidis, G.; Binas, V. Sputtered VO2 Coatings on Commercial Glass Substrates for Smart Glazing Applications. Sol. Energy Mater. Sol. Cells 2021, 220, 110845. [Google Scholar] [CrossRef]
- Gagaoudakis, E.; Michail, G.; Aperathitis, E.; Kortidis, I.; Binas, V.; Panagopoulou, M.; Raptis, Y.S.; Tsoukalas, D.; Kiriakidis, G. Low Temperature Rf-Sputtered Thermochromic VO2 Films on Flexible Glass Substrates. Adv. Mater. Lett. 2017, 8, 757–761. [Google Scholar] [CrossRef]
- Pankove, J. Optical Processes in Semiconductors; Dover Publications: New York, NY, USA, 1971. [Google Scholar]
- ASTM G173-03; Standard Tables of Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on a 37° Tilted Surface. In Annual Book of ASTM Standards; American Society for Testing and Materials: Philadelphia, PA, USA, 2003.
- Wyszecki, G.; Stiles, W.S. Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed.; Wiley: New York, NY, USA, 2000; ISBN 978-0471399186. [Google Scholar]
- Gagaoudakis, E.; Kortidis, I.; Michail, G.; Tsagaraki, K.; Binas, V.; Kiriakidis, G.; Aperathitis, E. Study of Low Temperature Rf-Sputtered Mg-Doped Vanadium Dioxide Thermochromic Films Deposited on Low-Emissivity Substrates. Thin Solid Film. 2016, 601, 99–105. [Google Scholar] [CrossRef]
- Li, M.; Wu, J.; Kang, C.; Zong, H.; Hu, Q.; Liu, H.; Cao, G. Moderating Oxygen Deficiency Induced Better Thermochromic Properties of Monoclinic Vanadium Dioxide Thin Films. Appl. Phys. A Mater. Sci. Process. 2020, 126, 1–9. [Google Scholar] [CrossRef]
- Madiba, I.G.; Kotsedi, L.; Ngom, B.D.; Khanyile, B.S.; Maaza, M. Effect of Substrate Temperature on Thermochromic Vanadium Dioxide Thin Films Sputtered from Vanadium Target. AIP Conf. Proc. 2018, 1962, 040002. [Google Scholar] [CrossRef]
- De Natale, J.F.; Hood, P.J.; Harker, A.B. Formation and Characterization of Grain-Oriented VO2 Thin Films. J. Appl. Phys. 1989, 66, 5844–5850. [Google Scholar] [CrossRef]
- Atkin, J.M.; Berweger, S.; Chavez, E.K.; Raschke, M.B.; Cao, J.; Fan, W.; Wu, J. Strain and Temperature Dependence of the Insulating Phases of VO2 near the Metal-Insulator Transition. Phys. Rev. B 2012, 85, 020101. [Google Scholar] [CrossRef]
- Kim, B.J.; Lee, Y.W.; Choi, S.; Lim, J.W.; Yun, S.J.; Kim, H.T.; Shin, T.J.; Yun, H.S. Micrometer X-ray Diffraction Study of VO2 Films: Separation between Metal-Insulator Transition and Structural Phase Transition. Phys. Rev. BvCondens. Matter Mater. Phys. 2008, 77, 235401. [Google Scholar] [CrossRef]
- Hu, S.; Li, S.Y.; Ahuja, R.; Granqvist, C.G.; Hermansson, K.; Niklasson, G.A.; Scheicher, R.H. Optical Properties of Mg-Doped VO2: Absorption Measurements and Hybrid Functional Calculations. Appl. Phys. Lett. 2012, 101, 201902. [Google Scholar] [CrossRef]
- Li, S.Y.; Mlyuka, N.R.; Primetzhofer, D.; Hallén, A.; Possnert, G.; Niklasson, G.A.; Granqvist, C.G. Bandgap Widening in Thermochromic Mg-Doped VO2 Thin Films: Quantitative Data Based on Optical Absorption. Appl. Phys. Lett. 2013, 103, 161907. [Google Scholar] [CrossRef]
- Zhang, C.; Koughia, C.; Güneş, O.; Luo, J.; Hossain, N.; Li, Y.; Cui, X.; Wen, S.J.; Wong, R.; Yang, Q.; et al. Synthesis, Structure and Optical Properties of High-Quality VO2 Thin Films Grown on Silicon, Quartz and Sapphire Substrates by High Temperature Magnetron Sputtering: Properties through the Transition Temperature. J. Alloys Compd. 2020, 848, 156323. [Google Scholar] [CrossRef]
- Bleu, Y.; Bourquard, F.; Jamon, D.; Loir, A.S.; Garrelie, F.; Donnet, C. Tailoring Thermochromic and Optical Properties of VO2 Thin Films by Pulsed Laser Deposition Using Different Starting Routes. Opt. Mater. 2022, 133, 113004. [Google Scholar] [CrossRef]
- Brassard, D.; Fourmaux, S.; Kieffer, J.C.; El Khakani, M.A.; Brassard, D.; Fourmaux, S.; Kieffer, J.C.; Khakani, M.A. El Grain Size Effect on the Semiconductor-Metal Phase Transition Characteristics of Magnetron-Sputtered VO2 Thin Films. Appl. Phys. Lett. 2005, 87, 051910. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, Z.; Wu, X.; Yang, W.; Jiang, Y. Transversal Grain Size Effect on the Phase-Transition Hysteresis Width of Vanadium Dioxide Films Comprising Spheroidal Nanoparticles. Vacuum 2014, 104, 47–50. [Google Scholar] [CrossRef]
- Jin, W.; Park, K.; Cho, J.Y.; Bae, S.H.; Siyar, M.; Jang, H.; Park, C. Thermochromic Properties of ZnO/VO2/ZnO Films on Soda Lime Silicate Glass Deposited by RF Magnetron Sputtering. Ceram. Int. 2022, 49, 10437–10444. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, H. High Visible Transmittance of VO2 Film Prepared by DC Magnetron Sputtering with Situ Annealing. J. Opt. 2021, 50, 508–511. [Google Scholar] [CrossRef]
- Kovács, G.J.; Bürger, D.; Skorupa, I.; Reuther, H.; Heller, R.; Schmidt, H. Effect of the Substrate on the Insulator-Metal Transition of Vanadium Dioxide Films. J. Appl. Phys. 2011, 109, 063708. [Google Scholar] [CrossRef]
Sample No. | Substrate | %O2 in Plasma | Thickness (nm) | Direction of VO2 Planes | D (nm) | RMS Roughness @RT (nm) | Eg (eV) |
---|---|---|---|---|---|---|---|
1 | Silicon | 3 | 40 | 4.4 | 2.7 | - | |
2 | K-Glass | 3 | 100 | 11.3 | 15.9 | 1.69 | |
3 | Fused silica | 1 | 100 | (011) | 6.9 | 5.0 | 1.48 |
4 | Flexible glass | 1 | 100 | (011) | 10.4 | 3.7 | 1.74 |
T (°C) | ||||
---|---|---|---|---|
Substrate | (a) RT | (b) 60 | (c) 80 | (d) 100 |
Silicon | ||||
K-glass | ||||
fused silica glass | ||||
flexible glass |
Substrate | T1 (°C) | T2 (°C) | TC (°C) | ΔTC (°C) | ΔTrIR (2000 nm) (%) | ΔTrsol (%) | Trlum (25 °C) (%) | (FWHM)h (°C) | (FWHM)h (°C) |
---|---|---|---|---|---|---|---|---|---|
Si | 49 | 44 | 46.5 | 5 | 6 | 1.5 | - | 29 | 19 |
K-glass | 59 | 50 | 54.5 | 9 | 20 | 6 | 38 | 11 | 9 |
fused silica | 41 | 34 | 37.5 | 7 | 28 | 4 | 38 | 20 | 17 |
flexible glass | 56 | 45 | 50.5 | 11 | 36 | 5 | 34 | 39 | 32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gagaoudakis, E.; Verveniotis, E.; Okawa, Y.; Michail, G.; Aperathitis, E.; Mantsiou, E.; Kiriakidis, G.; Binas, V. Study on the Surface Morphology of Thermochromic Rf-Sputtered VO2 Films Using Temperature-Dependent Atomic Force Microscopy. Appl. Sci. 2023, 13, 7662. https://doi.org/10.3390/app13137662
Gagaoudakis E, Verveniotis E, Okawa Y, Michail G, Aperathitis E, Mantsiou E, Kiriakidis G, Binas V. Study on the Surface Morphology of Thermochromic Rf-Sputtered VO2 Films Using Temperature-Dependent Atomic Force Microscopy. Applied Sciences. 2023; 13(13):7662. https://doi.org/10.3390/app13137662
Chicago/Turabian StyleGagaoudakis, Emmanouil, Elisseos Verveniotis, Yuji Okawa, Giannis Michail, Elias Aperathitis, Eleni Mantsiou, George Kiriakidis, and Vassilios Binas. 2023. "Study on the Surface Morphology of Thermochromic Rf-Sputtered VO2 Films Using Temperature-Dependent Atomic Force Microscopy" Applied Sciences 13, no. 13: 7662. https://doi.org/10.3390/app13137662
APA StyleGagaoudakis, E., Verveniotis, E., Okawa, Y., Michail, G., Aperathitis, E., Mantsiou, E., Kiriakidis, G., & Binas, V. (2023). Study on the Surface Morphology of Thermochromic Rf-Sputtered VO2 Films Using Temperature-Dependent Atomic Force Microscopy. Applied Sciences, 13(13), 7662. https://doi.org/10.3390/app13137662