Strength Performance of Nonwoven Coir Geotextiles as an Alternative Material for Slope Stabilization
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Treatment Method
2.1.1. Alkaline Treatment: Mercerization Method
2.1.2. Alkaline Peroxide Treatment: Bleaching Method
2.2. Exposure Method
2.2.1. Exposure to Field Conditions
2.2.2. Exposure to Groundwater
2.3. Tests Methods for the Mechanical Properties of Coir Geotextile
2.4. Slope Stability Simulation Using Rocscience Software Program
3. Results and Discussion
3.1. Effect of Treatment Processes on the Physical and Microfabric Structure of Nonwoven Coir Geotextiles
3.2. Effect of Treatment Processes on the Grab-Breaking Strength of Nonwoven Coir Geotextiles
3.3. Effect of Treatment Processes on CBR Puncture Resistance of Nonwoven Coir Geotextile Components
3.4. Slope Application of Nonwoven Coir Geotextile Simulated Using Rocscience—Slide2 Program
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duncan, J.M.; Wright, S.G.; Brandon, T.L. Soil Strength and Slope Stability; John Wiley & Sons: Hoboken, NJ, USA, 2014; Chapters 6–7. [Google Scholar]
- Peng, P.; Li, Z.; Zhang, X.; Zhang, W.; Dong, W. Efficient Method for Calculating Slope Failure Risk Based on Element Failure Probability. Appl. Sci. 2023, 13, 4806. [Google Scholar] [CrossRef]
- Djelabi, S.; Karoui, H.; Frikha, W.; Dlala, M.; Bouassida, M.; Ninouh, T.; El May, M. Stability of a Compacted Sand Slope Model Subject to Crest Load. Appl. Sci. 2023, 13, 5562. [Google Scholar] [CrossRef]
- Paringit, M.C.R.; Cutora, M.D.; Santiago, E.H.; Adajar, M.A.Q. Assessment of Landslide Susceptibility: A Case Study of Carabao Mountain in Baguio City. Int. J. Geomate 2020, 19, 166–173. [Google Scholar] [CrossRef]
- Kazmi, D.; Qasim, S.; Harahap, I.S.H.; Baharom, S.; Mehmood, M.; Siddiqui, F.I.; Imran, M. Slope Remediation Techniques and Overview of Landslide Risk Management. Civ. Eng. J. 2017, 3, 180–189. [Google Scholar] [CrossRef]
- Shukla, S.K. An Introduction to Geosynthetic Engineering, 1st ed.; CRC Press: New York, NY, USA, 2016. [Google Scholar]
- Palmeira, E.M.; Araújo, G.L.S.; Santos, E.C.G. Sustainable Solutions with Geosynthetics and Alternative Construction Materials—A Review. Sustainability 2021, 13, 12756. [Google Scholar] [CrossRef]
- Koerner, R.M. Emerging and future developments of selected geosynthetic applications. J. Geotech. Geoenviron. Eng. 2000, 126, 293–306. [Google Scholar] [CrossRef]
- Cherian, B.M.; De Souza, S.F.; Leao, A.L.; Kozlowski, R.M.; Thomas, S. Natural fibres for geotextiles. In Handbook of Natural Fibres; Woodhead Publishing: Sawston, UK, 2020; pp. 499–530. [Google Scholar]
- Niroumand, H.; Kassim, K.A.; Ghafooripour, A.; Nazir, R. The role of geosynthetics in slope stability. Electron. J. Geotech. Eng. 2012, 17, 2739–2748. Available online: http://www.ejge.com/2012/Ppr12.229alr.pdf (accessed on 1 August 2021).
- Sathish, S.; Karthi, N.; Prabhu, L.; Gokulkumar, S.; Balaji, D.; Vigneshkumar, N.; Ajeem Frahan, T.S.; AkilKumar, A.; Dinesh, V.P. A review of natural fiber composites: Extraction methods, chemical treatments, and applications. Mater. Today Proc. 2021, 45, 8017–8023. [Google Scholar] [CrossRef]
- Rawal, A. Woven fabrics for geotextiles. In Woven Textiles; Woodhead Publishing: Sawston, UK, 2012; pp. 367–386. [Google Scholar]
- Wu, H.; Yao, C.; Li, C.; Miao, M.; Zhong, Y.; Lu, Y.; Liu, T. Review of Application and Innovation of Geotextiles in Geotechnical Engineering. Materials 2020, 13, 1774. [Google Scholar] [CrossRef] [Green Version]
- Pickering, K.L.; Efendy, M.A.; Le, T.M. A review of recent developments in natural fibre composites and their mechanical performance. Compos. Part A Appl. Sci. Manuf. 2016, 83, 98–112. [Google Scholar] [CrossRef] [Green Version]
- Sanjay, M.; Siengchin, S.; Parameswaranpillai, J.; Jawaid, M.; Pruncu, C.I.; Khan, A. A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing, and characterization. Carbohydr. Polym. 2019, 207, 108–121. [Google Scholar]
- Jaafar, J.; Siregar, J.P.; Mohd Salleh, S.; Mohd Hamdan, M.H.; Cionita, T.; Rihayat, T. Important Considerations in Manufacturing of Natural Fiber Composites: A Review. Int. J. Precis. Eng. Manuf. Green Technol. 2019, 6, 647–664. [Google Scholar] [CrossRef]
- Delaure, J.A. The strength of coconut fiber waste as an organic fiber on concrete. Int. Inst. Sci. Technol. Educ. Civ. Eng. Res. 2017, 9, 7–11. Available online: https://core.ac.uk/download/pdf/234678621.pdf (accessed on 10 August 2021).
- Abdullah, N.M.; Ahmad, I. Effect of chemical treatment on mechanical and water-sorption properties of fiber-unsaturated polyester from recycled PET. Int. Sch. Res. Netw. 2012, 2012, 134683. [Google Scholar] [CrossRef] [Green Version]
- Mann, G.S.; Singh, J.; Bahl, A.; Singh, S. Benefits and limitations of using natural fibers as reinforcement materials. J. Emerg. Technol. Innov. Res. 2019, 6, 1913–1916. Available online: https://www.jetir.org/papers/JETIRDY06303.pdf (accessed on 15 July 2021).
- Celis, O.C. Viability of pineapple leaves as an alternative natural fiber geotextile. Int. J. Sci. Eng. Res. 2017, 5, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Decano, C.S. Corn (Zea mays L.) stalk geotextile net for soil erosion mitigation. J. Adv. Agric. Technol. 2016, 3, 276–280. [Google Scholar] [CrossRef] [Green Version]
- Candelaria, M.E.; Tanchuling, M.A.; Carrascal, H.C.; Bergado, C.I. Laboratory Scale Experiments to Measure Sediment Yield in Coco-Fiber Reinforced Slopes. 2013. Available online: https://www.irbnet.de/daten/iconda/CIB_DC26753.pdf (accessed on 20 July 2021).
- Koerner, R.M. Designing with Geosynthetics, 5th ed.; Pearson Prentice Hall: Hoboken, NJ, USA, 2005. [Google Scholar]
- Rawal, A.; Kochlar, A.; Gupta, A. Biaxial tensile behavior of spun-bonded nonwoven geotextiles. Geotext. Geomembr. 2011, 29, 596–599. [Google Scholar] [CrossRef]
- Gaspar, F.; Bakatovich, A.; Davydenko, N.; Joshi, A. 8—Building Insulation Materials Based on Agricultural Wastes. In Bio-Based Materials and Biotechnologies for Eco-Efficient Construction; Pacheco-Torgal, F., Ivanov, V., Tsang, D.C., Eds.; Woodhead Publishing: Sawston, UK, 2020; pp. 149–170. [Google Scholar] [CrossRef]
- Pogosa, J.; Asio, V.; Bande, M.; Bianchi, S.; Grenze, J.; Pichelin, F. Productivity and sustainability of coconut production and husk utilization in the Philippines: Coconut husk availability and utilization. Int. J. Environ. Rural Dev. 2018, 9, 31–36. [Google Scholar] [CrossRef]
- Ray, D.; Sarkar, B.K.; Rana, A.K.; Bose, N.R. Effect of alkali treated jute fibres on composite properties. Bull. Mater. Sci. 2001, 24, 129–135. [Google Scholar] [CrossRef]
- Rayung, M.; Ibrahim, N.A.; Zainuddin, N.; Saad, W.Z.; Razak, N.I.A.; Chieng, B.W. The effect of fiber bleaching treatment on the properties of poly (lactic acid)/oil palm empty fruit bunch fiber composites. Int. J. Mol. Sci. 2014, 15, 14728–14742. [Google Scholar] [CrossRef] [Green Version]
- Kalipcilar, I.; Mardani-Aghabaglou, A.; Sezer, G.I.; Altun, S.; Sezer, A. Assessment of the effect of sulfate attack on cement stabilized montmorillonite. Geomech. Eng. 2016, 10, 807–826. [Google Scholar] [CrossRef]
- Association of Structural Engineers of the Philippines (ASEP). National Structural Code of the Philippines 2015. Volume 1, Buildings, Towers, and Other Vertical Structures; ASEP, Inc.: Quezon City, Philippines, 2015. [Google Scholar]
- Berg, R.R.; Christopher, B.R.; Samtani, N.C. Design and Construction of Mechanically Stabilized Earth Walls and Reinforced Soil Slopes; US Department of Transportation, Federal Highway Administration, National Highway Institute: Vienna, VA, USA, 2009.
- Then, Y.Y.; Ibrahim, N.A.; Zainuddin, N.; Chieng, B.W.; Ariffin, H.; Yunus, W.M.Z.W. Influence of alkaline-peroxide treatment of fiber on the mechanical properties of oil palm mesocarp fiber/poly (butylene succinate) biocomposite. BioResources 2015, 10, 1730–1746. [Google Scholar] [CrossRef]
- Asasutjarit, C.; Charoenvai, S.; Hirunlabh, J.; Khedari, J. Materials and mechanical properties of pretreated coir-based green composites. Compos. Part B Eng. 2009, 40, 633–637. [Google Scholar] [CrossRef]
- Valasek, P.; Muller, M.; Sleger, V.; Kolar, V.; Hronmasova, M.; D’Amato, R.; Ruggiero, A. Influence of alkali treatment on the microstructure and mechanical properties of coir and abaca fibers. Materials 2021, 14, 2636. [Google Scholar] [CrossRef]
- Rout, J.; Tripathy, S.S.; Nayak, S.K.; Misra, M.; Mohanty, A.K. Scanning electron microscopy study of chemically modified coir fibers. J. Appl. Polym. Sci. 2001, 79, 1169–1177. [Google Scholar] [CrossRef]
- Carvalho, K.C.C.; Mulinari, D.R.; Voorwald, H.J.C.; Cioffi, M.O.H. Chemical modification effect on the mechanical properties of hips/coconut fiber composites. BioResources 2010, 5, 1143–1155. [Google Scholar]
- Sgriccia, N.; Hawley, M.C.; Misra, M. Characterization of natural fiber surfaces and natural fiber composites. Compos. Part A Appl. Sci. Manuf. 2008, 39, 1632–1637. [Google Scholar] [CrossRef]
- Brígida, A.I.S.; Calado, V.M.A.; Gonçalves, L.R.B.; Coelho, M.A.Z. Effect of chemical treatments on properties of green coconut fiber. Carbohydr. Polym. 2010, 79, 832–838. [Google Scholar] [CrossRef]
- Pathirana, D.S.K. Investigation of Tensile Properties and Durability of Coir Fibres/Geotextile. Master’s Thesis, Department of Textile and Clothing Technology of the University of Moratuwa, Moratuwa, Sri Lanka, 2004. [Google Scholar]
- Li, X.; Tabil, L.G.; Panigrahi, S. Chemical treatments of natural fiber for use in natural fiber—Reinforced composites: A review. J. Polym. Environ. 2007, 15, 25–33. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Fei, B.H.; Yu, Y.; Cheng, H.T.; Wang, C.G. Effect of the amount of lignin on tensile properties of single wood fibers. For. Sci. Pract. 2013, 15, 56–60. [Google Scholar]
- Saheb, N.D.; Jog, J.P. Natural fiber polymer composites: A review. Adv. Polym. Technol. 1999, 18, 351–363. [Google Scholar] [CrossRef]
- Askari, A.S.; Najar, S.S.; Vaghasloo, Y.A. Study of the effect of test speed and fabric weight on the puncture behavior of polyester needle-punched nonwoven geotextile. J. Eng. Fibers Fabr. 2012, 7, 1–7. [Google Scholar]
- Liu, C.; Evett, J.B. Soils and Foundations, 7th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2008. [Google Scholar]
Property | Soil | |
---|---|---|
Silty Sand | Backfill | |
Unit Weight (kN/m3) | 18 | 16 |
Strength Type | Mohr-Coulomb | Mohr-Coulomb |
Cohesion (kPa) | 22 | 2 |
Angle of Friction (°) | 35 | 35 |
Reduction Factor | ||
---|---|---|
Coir Geotextile | Synthetic Geotextile | |
Creep | 2 | 1.6 |
Installation | 1.2 | 1.1 |
Deterioration | 1.4 | 1.1 |
Factor of Safety | 1.5 | 1.3 |
Element | Weight Percentage of Composition (%) | ||
---|---|---|---|
Untreated | Mercerized | Bleached | |
C | 54.49 | 22.32 | 30.47 |
O | 34.51 | 36.03 | 53.19 |
Si | 1.33 | 0.73 | 0.43 |
Ca | 0.5 | 5.72 | 4.32 |
O/C ratio | 0.63 | 1.61 | 1.75 |
Treatment | Grab-Breaking Strength (KPa) | ||
---|---|---|---|
Exposure Conditions | |||
Without Exposure | Exposure to Field Condition | Exposure to Groundwater | |
Untreated | 994.17 | 1451.11 | 1157.78 |
Mercerized | 1093.33 | 1769.58 | 2272.08 |
Bleached | 1409.44 | 1555.00 | 1612.22 |
Treatment | CBR Puncture Load (N) | ||
---|---|---|---|
Exposure Conditions | |||
Without Exposure | Exposure to Field Condition | Exposure to Groundwater | |
Untreated | 1064.42 | 849.25 | 1144.50 |
Mercerized | 617.33 | 764.25 | 704.00 |
Bleached | 501.75 | 446.67 | 817.92 |
Treatment–Exposure | Allowable Tensile Strength (KN/m) | Spacing (m) | Factor of Safety Determined by Bishop’s Method |
---|---|---|---|
Untreated–Unexposed | 0.58 | 0.300 | 1.362 |
Mercerized–Unexposed | 0.64 | 0.300 | 1.367 |
Bleached–Unexposed | 0.83 | 0.300 | 1.384 |
Untreated–Field Condition | 0.85 | 0.300 | 1.386 |
Mercerized–Field Condition | 1.04 | 0.300 | 1.402 |
Bleached–Field Condition | 0.92 | 0.300 | 1.392 |
Untreated–Groundwater | 0.68 | 0.300 | 1.371 |
Mercerized–Groundwater | 1.34 | 0.300 | 1.432 |
Bleached–Groundwater | 0.95 | 0.300 | 1.394 |
Synthetic Geotextile | 1.98 | 0.300 | 1.500 |
No Reinforcement | --- | --- | 1.307 |
Treatment–Exposure | Allowable Tensile Strength (KN/m) | Spacing (m) | Number of Geotextiles |
---|---|---|---|
Untreated–Unexposed | 0.58 | 0.084 | 392 |
Mercerized–Unexposed | 0.64 | 0.095 | 347 |
Bleached–Unexposed | 0.83 | 0.120 | 275 |
Untreated–Field Condition | 0.85 | 0.124 | 266 |
Mercerized–Field Condition | 1.04 | 0.150 | 220 |
Bleached–Field Condition | 0.92 | 0.133 | 248 |
Untreated–Groundwater | 0.68 | 0.099 | 333 |
Mercerized–Groundwater | 1.34 | 0.198 | 166 |
Bleached–Groundwater | 0.95 | 0.140 | 235 |
Synthetic Geotextile | 1.98 | 0.300 | 110 |
No Reinforcement | --- | --- | --- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adajar, M.A.; Cutora, M.; Bolima, S.J.; Chua, K.J.; Isidro, I.A.; Ramos, J.V. Strength Performance of Nonwoven Coir Geotextiles as an Alternative Material for Slope Stabilization. Appl. Sci. 2023, 13, 7590. https://doi.org/10.3390/app13137590
Adajar MA, Cutora M, Bolima SJ, Chua KJ, Isidro IA, Ramos JV. Strength Performance of Nonwoven Coir Geotextiles as an Alternative Material for Slope Stabilization. Applied Sciences. 2023; 13(13):7590. https://doi.org/10.3390/app13137590
Chicago/Turabian StyleAdajar, Mary Ann, Miller Cutora, Shayne Jostein Bolima, Kyle Johnson Chua, Irwyn Ainsley Isidro, and John Vincent Ramos. 2023. "Strength Performance of Nonwoven Coir Geotextiles as an Alternative Material for Slope Stabilization" Applied Sciences 13, no. 13: 7590. https://doi.org/10.3390/app13137590
APA StyleAdajar, M. A., Cutora, M., Bolima, S. J., Chua, K. J., Isidro, I. A., & Ramos, J. V. (2023). Strength Performance of Nonwoven Coir Geotextiles as an Alternative Material for Slope Stabilization. Applied Sciences, 13(13), 7590. https://doi.org/10.3390/app13137590