Muscle Function and Thickness Are Not Associated with Responsiveness to Post-Activation Performance Enhancement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Dependent Variables
2.4. Statistical Analyses
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cuenca-Fernandez, F.; Smith, I.C.; Jordan, M.J.; MacIntosh, B.R.; Lopez- Contreras, G.; Arellano, R.; Herzog, W. Nonlocalized postactivation performance enhancement (PAPE) effects in trained athletes: A pilot study. Appl. Physiol. Nutr. Metab. 2017, 42, 1122–1125. [Google Scholar] [CrossRef] [PubMed]
- Loturco, I.; Tricoli, V.; Roschel, H.; Nakamura, F.Y.; Cal Abad, C.C.; Kobal, R.; Gil, S.; González-Badillo, J.J. Transference of traditional versus complex strength and power training to sprint performance. J. Hum. Kinet. 2014, 41, 265–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gołaś, A.; Maszczyk, A.; Zajac, A.; Mikołajec, K.; Stastny, P. Optimizing post activation potentiation for explosive activities in competitive sports. J. Hum. Kinet. 2016, 52, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Bogdanis, G.C.; Tsoukos, A.; Veligekas, P. Improvement of Long-Jump Performance During Competition Using a Plyometric Exercise. Int. J. Sport. Physiol. Perform. 2017, 12, 235–240. [Google Scholar] [CrossRef]
- Matusiński, A.; Pietraszewski, P.; Krzysztofik, M.; Gołaś, A. The Effects of Resisted Post-Activation Sprint Performance Enhancement in Elite Female Sprinters. Front. Physiol. 2021, 12, 651–659. [Google Scholar] [CrossRef]
- Đurović, M.; Stojanović, N.; Stojiljković, N.; Karaula, D.; Okičić, T. The effects of post-activation performance enhancement and different warm-up protocols on swim start performance. Sci. Rep. 2022, 12, 9038. [Google Scholar] [CrossRef]
- Marshall, J.; Bishop, C.; Turner, A.; Haff, G.G. Optimal Training Sequences to Develop Lower Body Force, Velocity, Power, and Jump Height: A Systematic Review with Meta-Analysis. Sports Med. 2021, 51, 1245–1271. [Google Scholar] [CrossRef] [PubMed]
- Seitz, L.B.; Trajano, G.S.; Dal Maso, F.; Haff, G.G.; Blazevich, A.J. Postactivation potentiation during voluntary contractions after continued knee extensor task-specific practice. Appl. Physiol. Nutr. Metab. 2015, 40, 230–237. [Google Scholar] [CrossRef]
- Sjøgaard, G.; Adams, R.P.; Saltin, B. Water and ion shifts in skeletal muscle of humans with intense dynamic knee extension. Am. J. Physiol. 1985, 248 Pt 2, R190–R196. [Google Scholar] [CrossRef]
- González-Alonso, J.; Quistorff, B.; Krustrup, P.; Bangsbo, J.; Saltin, B. Heat production in human skeletal muscle at the onset of intense dynamic exercise. J. Physiol. 2000, 524 Pt 2, 603–615. [Google Scholar] [CrossRef] [PubMed]
- Hamada, T.; Sale, D.G.; MacDougall, J.D.; Tarnopolsky, M.A. Postactivation potentiation, fiber type, and twitch contraction time in human knee extensor muscles. J. Appl. Physiol. 2000, 88, 2131–2137. [Google Scholar] [CrossRef]
- Seitz, L.B.; Haff, G.G. Factors Modulating Post-Activation Potentiation of Jump, Sprint, Throw, and Upper-Body Ballistic Performances: A Systematic Review with Meta-Analysis. Sports Med. 2016, 46, 231–240. [Google Scholar] [CrossRef]
- Wilson, J.M.; Loenneke, J.P.; Jo, E.; Wilson, G.J.; Zourdos, M.C.; Kim, J.S. The effects of endurance, strength, and power training on muscle fiber type shifting. J. Strength Cond. Res. 2012, 26, 1724–1729. [Google Scholar] [CrossRef]
- Plotkin, D.L.; Roberts, M.D.; Haun, C.T.; Schoenfeld, B.J. Muscle Fiber Type Transitions with Exercise Training: Shifting Perspectives. Sports 2021, 9, 127. [Google Scholar] [CrossRef]
- Mantovani, G.B.; Barreto, R.V.; Souza, V.A.; Bueno Junior, C.R.; Assumpção, C.O.; Greco, C.C.; Denadai, B.S.; de Lima, L.C.R. The influence of the ACTN3 R577X polymorphism in the responsiveness to post-activation jump performance enhancement in untrained young men. Rev. Bras. Cineantropom. Desempenho Hum. 2021, 23, e77035. [Google Scholar] [CrossRef]
- Souza, V.A.; Barreto, R.V.; Mantovani, G.B.; Greco, C.C.; Denadai, B.S.; Nosaka, K.; Lima, L.C.R. Effects of Loaded Plyometric Exercise on Post-Activation Performance Enhancement of Countermovement Jump in Sedentary Men. Res. Q. Exerc. Sport 2023, 94, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Macaluso, F.; Isaacs, A.W.; Myburgh, K.H. Preferential type II muscle fiber damage from plyometric exercise. J. Athl. Train. 2012, 47, 420–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balsalobre-Fernández, C.; Glaister, M.; Lockey, R.A. The validity and reliability of an iPhone app for measuring vertical jump performance. J. Sports Sci. 2015, 33, 1574–1579. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, C.J.; Sale, D.G. Enhancement of jump performance after a 5-RM squat is associated with postactivation potentiation. Eur. J. Appl. Physiol. 2011, 111, 1957–1963. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.J.; Kong, P.W. Effects of isometric and dynamic postactivation potentiation protocols on maximal sprint performance. J. Strength Cond. Res. 2013, 27, 2730–2736. [Google Scholar] [CrossRef]
- Lima, L.C.R.; Oliveira, F.B.D.; Oliveira, T.P.; Assumpção, C.O.; Greco, C.C.; Cardozo, A.C.; Denadai, B.S. Postactivation potentiation biases maximal isometric strength assessment. BioMed. Res. Int. 2014, 2014, 126961. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.K.; Raza, S.; Moiz, J.A.; Verma, S.; Naqvi, I.H.; Anwer, S.; Alghadir, A.H. Postactivation Potentiation Following Acute Bouts of Plyometric versus Heavy-Resistance Exercise in Collegiate Soccer Players. Biomed. Res. Int. 2018, 2018, 3719039. [Google Scholar] [CrossRef] [Green Version]
- Garbisu-Hualde, A.; Santos-Concejero, J. Post-Activation Potentiation in Strength Training: A Systematic Review of the Scientific Literature. J. Hum. Kinet. 2021, 78, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Carmo, E.C.; De Souza, E.O.; Roschel, H.; Kobal, R.; Ramos, H.; Gil, S.; Tricoli, V. Self-selected Rest Interval Improves Vertical Jump Postactivation Potentiation. J. Strength Cond. Res. 2021, 35, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Ruben, R.M.; Molinari, M.A.; Bibbee, C.A.; Childress, M.A.; Harman, M.S.; Reed, K.P.; Haff, G.G. The acute effects of an ascending squat protocol on performance during horizontal plyometric jumps. J. Strength Cond. Res. 2010, 24, 358–369. [Google Scholar] [CrossRef] [PubMed]
- Seitz, L.B.; de Villarreal, E.S.; Haff, G.G. The temporal profile of postactivation potentiation is related to strength level. J. Strength Cond. Res. 2014, 28, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Chiu, L.Z.F.; Fry, A.C.; Weiss, L.W.; Schilling, B.K.; Brown, L.E.; Smith, S.L. Postactivation potentiation response in athletic and recreationally trained individuals. J. Strength Cond. Res. 2003, 17, 671–677. [Google Scholar]
- Suchomel, T.J.; Nimphius, S.; Bellon, C.R.; Stone, M.H. The Importance of Muscular Strength: Training Considerations. Sports Med. 2018, 48, 765–785. [Google Scholar] [CrossRef]
- Andersen, V.; Prieske, O.; Stien, N.; Cumming, K.; Solstad, T.E.J.; Paulsen, G.; van den Tillaar, R.; Pedersen, H.; Saeterbakken, A.H. Comparing the effects of variable and traditional resistance training on maximal strength and muscle power in healthy adults: A systematic review and meta-analysis. J. Sci. Med. Sport 2022, 25, 1023–1032. [Google Scholar] [CrossRef]
- Nuñez, J.; Suarez-Arrones, L.; de Hoyo, M.; Loturco, I. Strength Training in Professional Soccer: Effects on Short-sprint and Jump Performance. Int. J. Sports Med. 2022, 43, 485–495. [Google Scholar] [CrossRef]
- Ćopić, N.; Dopsaj, M.; Ivanović, J.; Nešić, G.; Jarić, S. Body composition and muscle strength predictors of jumping performance: Differences between elite female volleyball competitors and nontrained individuals. J. Strength Cond. Res. 2014, 28, 2709–2716. [Google Scholar] [CrossRef]
- Zouita, A.B.M.; Ben Salah, F.Z.; Dziri, C.; Beardsley, C. Comparison of isokinetic trunk flexion and extension torques and powers between athletes and nonathletes. J. Exerc. Rehabil. 2018, 14, 72–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Degens, H.; Stasiulis, A.; Skurvydas, A.; Statkeviciene, B.; Venckunas, T. Physiological comparison between non-athletes, endurance, power and team athletes. Eur. J. Appl. Physiol. 2019, 119, 1377–1386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sterczala, A.J.; Miller, J.D.; Dimmick, H.L.; Wray, M.E.; Trevino, M.A.; Herda, T.J. Eight weeks of resistance training increases strength, muscle cross-sectional area and motor unit size, but does not alter firing rates in the vastus lateralis. Eur. J. Appl. Physiol. 2020, 120, 281–294. [Google Scholar] [CrossRef] [PubMed]
- Blazevich, A.J.; Babault, N. Post-activation potentiation versus post-activation performance enhancement in humans: Historical perspective, underlying mechanisms, and current issues. Front. Physiol. 2019, 10, 1359. [Google Scholar] [CrossRef] [Green Version]
- Brumitt, J.; Cuddeford, T. Current concepts of muscle and tendon adaptation to strength and conditioning. Int. J. Sports Phys. Ther. 2015, 10, 748–759. [Google Scholar]
- Olfert, I.M.; Baum, O.; Hellsten, Y.; Egginton, S. Advances and challenges in skeletal muscle angiogenesis. Am. J. Physiol. Heart Circ. Physiol. 2016, 310, H326–H336. [Google Scholar] [CrossRef] [Green Version]
- Goreham, C.; Green, H.J.; Ball-Burnett, M.; Ranney, D. High-resistance training and muscle metabolism during prolonged exercise. Am. J. Physiol. 1999, 276, E489–E496. [Google Scholar] [CrossRef] [Green Version]
- Knuiman, P.; Hopman, M.T.; Mensink, M. Glycogen availability and skeletal muscle adaptations with endurance and resistance exercise. Nutr. Metab. 2015, 12, 59. [Google Scholar] [CrossRef] [Green Version]
- Spiliopoulou, P.; Zaras, N.; Methenitis, S.; Papadimas, G.; Papadopoulos, C.; Bogdanis, G.C.; Terzis, G. Effect of Concurrent Power Training and High-Intensity Interval Cycling on Muscle Morphology and Performance. J. Strength Cond. Res. 2021, 35, 2464–2471. [Google Scholar] [CrossRef]
- Tillin, N.A.; Bishop, D. Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sports Med. 2009, 39, 147–166. [Google Scholar] [CrossRef]
- Smith, I.C.; MacIntosh, B.R. A comment on “A new taxonomy for postactivation potentiation in sport”. Int. J. Sports Physiol. Perform. 2021, 16, 163. [Google Scholar] [CrossRef]
- Boullosa, D.; Beato, M.; Dello Iacono, A.; Cuenca-Fernández, F.; Doma, K.; Schumann, M.; Zagatto, A.M.; Loturco, I.; Behm, D.G. Response to the comment on “A new taxonomy for postactivation potentiation in sport”. Int. J. Sports Physiol. Perform. 2021, 16, 164. [Google Scholar] [CrossRef] [PubMed]
- Bagley, J.R.; McLeland, K.A.; Arevalo, J.A.; Brown, L.E.; Coburn, J.W.; Galpin, A.J. Skeletal Muscle Fatigability and Myosin Heavy Chain Fiber Type in Resistance Trained Men. J. Strength Cond. Res. 2017, 31, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.C.; Lin, S.C.; Hsu, S.C.; Yang, M.T.; Chan, K.H. Effects of Creatine Supplementation on Muscle Strength and Optimal Individual Post-Activation Potentiation Time of the Upper Body in Canoeists. Nutrients 2017, 9, 1169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
F | p | R2 | Adjusted R2 | |
---|---|---|---|---|
Model 1 Predictors: IPT | 0.05 | 0.83 | 0.003 | −0.063 |
Model 2 Predictors: IPT & VLMT | 0.34 | 0.72 | 0.046 | −0.09 |
Model 3 Predictors: IPT, VLMT & POCON | 2.51 | 0.1 | 0.367 | 0.221 |
Model 4 Predictors: IPT, VLMT, POCON & CMJCON | 2.05 | 0.15 | 0.405 | 0.207 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fontanetti, G.; Barreto, R.V.; Junior, R.C.; Mantovani, G.B.; Denadai, B.S.; Greco, C.C.; Lima, L.C.R.d. Muscle Function and Thickness Are Not Associated with Responsiveness to Post-Activation Performance Enhancement. Appl. Sci. 2023, 13, 7520. https://doi.org/10.3390/app13137520
Fontanetti G, Barreto RV, Junior RC, Mantovani GB, Denadai BS, Greco CC, Lima LCRd. Muscle Function and Thickness Are Not Associated with Responsiveness to Post-Activation Performance Enhancement. Applied Sciences. 2023; 13(13):7520. https://doi.org/10.3390/app13137520
Chicago/Turabian StyleFontanetti, Gabriel, Renan Vieira Barreto, Rubens Correa Junior, Guilherme Beneduzzi Mantovani, Benedito Sérgio Denadai, Camila Coelho Greco, and Leonardo Coelho Rabello de Lima. 2023. "Muscle Function and Thickness Are Not Associated with Responsiveness to Post-Activation Performance Enhancement" Applied Sciences 13, no. 13: 7520. https://doi.org/10.3390/app13137520
APA StyleFontanetti, G., Barreto, R. V., Junior, R. C., Mantovani, G. B., Denadai, B. S., Greco, C. C., & Lima, L. C. R. d. (2023). Muscle Function and Thickness Are Not Associated with Responsiveness to Post-Activation Performance Enhancement. Applied Sciences, 13(13), 7520. https://doi.org/10.3390/app13137520