Old-Fashioned, but Still a Superfood—Red Beets as a Rich Source of Bioactive Compounds
Abstract
:1. Introduction
2. Betalains
3. Flavonoids and Polyphenolic Acids
4. Carotenoids
5. Minerals
6. Vitamins
7. Other Compounds
Compound | Concentration * | Sample | References |
---|---|---|---|
Betalains | |||
Betanin | 128.7 ± 22.0 | beet | [8] |
797 − 421.7 | beet juices | [25] | |
797 ± 24.0 | Organic beet juice | [71] | |
406 ± 17.0 | Conventional beet juice | [71] | |
705 ± 156 | Beet extract | [49] | |
Vulgahantin I | 321 − 432.1 | Beet juices | [25] |
424 ± 16.0 | Organic beet juice | [71] | |
311 ± 13.0 | Conventional beet juice | [71] | |
397 ± 100 | Beet extract | [49] | |
Flavonoids | |||
Myricetin | 0.27 ± 0.091 | Organic beets | [28] |
0.30 ± 0.109 | Conventional beets | [28] | |
Luteolin | 0.14 ± 0.004 | Organic beets | [28] |
0.13 ± 0.003 | Conventional beets | [28] | |
Quercetin | 0.13 ± 0.017 | Organic beets | [28] |
0.010 ± 0.009 | Conventional beets | [28] | |
0.0023 | Fresh red beets | [47] | |
0.009 | Commercial juice | [47] | |
Epicatechin | 3.20 | Intact beet | [11] |
2.1 ± 0.100 | Commercial juice | [25] | |
0.253 | Fresh beet | [47] | |
0.202 | Fermented beet | [47] | |
0.034 | Commercial juice | [47] | |
Catechin | 0.715 ± 0.018 | Commercial juice | [25] |
6.73 ± 0.031 | Organic juice | [25] | |
Polyphenolic acids | |||
Gallic acid | 36.40 ± 23.77 | Organic beet | [28] |
65.93 ± 45.38 | Conventional beet | [28] | |
0.147± 0.008 | Commercial juice | [25] | |
1.24 ± 0.054 | Organic juice | [25] | |
Chlorogenic acid | 1.70 ± 0.55 | Beet juice | [91] |
4.67 ± 3.67 | Organic beet | [28] | |
2.29 ± 2.09 | Conventional beet | [28] | |
1.80 | Intact beet | [11] | |
Caffeic acid | 2.22 ± 0.75 | Beet juice | [91] |
2.40 ± 0.050 | Commercial beet juice | [25] | |
0.900 ± 0.008 | Organic beet juice | [25] | |
0.74 ± 0.40 | Organic beet | [28] | |
0.77 ± 0.28 | Conventional beet | [28] | |
3.70 | Intact plant | [11] | |
Ferulic acid | 0.120 ± 0.005 | Commercial beet juice | [25] |
1.81 ± 0.062 | Organic beet juice | [25] | |
0.54 ± 0.37 | Organic beet | [28] | |
1.71 ± 0.76 | Conventional beet | [28] | |
pHBA | 1.2 | Intact plant | [11] |
4.03 ± 0.053 | Commercial beet juice | [25] | |
6.83 ± 0.095 | Organic beet juice | [25] | |
p-coumarc acid | 5.27 ± 0.98 | Beet juice | [91] |
Sinapic acid | 1.99 ± 0.80 | Beet juice | [91] |
Vitamin C | 4.55 ± 2.16 | Organic beet | [28] |
5.08 ± 2.10 | Conventional beet | [28] | |
4.36 | Red beet | [67] | |
7.20 | Red beet | [8] | |
4.90 | Red beet | [76] | |
Vitamins B | |||
Riboflavin (B2) | 0.034 | Red beet | [67] |
0.040 | Red beet | [76] | |
Nicotinamide (B3) | 2.85 ± 0.064 | Commercial beet juice | [25] |
2.43 ± 0.040 | Organic beet juice | [25] | |
0.334 | Red beet | [76] | |
0.030 | Red beet | [67] | |
Pantothenic acid (B5) | 2.49 ± 0.041 | Commercial beet juice | [25] |
1.070 ± 0.047 | Organic beet juice | [25] | |
0.151 | Red beets | [67] | |
Pirydoxal (B6) | 1.420 ± 0.025 | Commercial beet juice | [25] |
1.67 ± 0.038 | Organic beet juice | [25] | |
90 | Red beets | [67] | |
0.067 | Red beet | [76] | |
Folate (B9) | 0.109 | Red beet | [8] |
Selenium compounds | |||
Selenomethionine | 0.56 ± 0.020 | Organic beet juice | [71] |
0.20 ± 0.01 | Conventional beet juice | [71] | |
Methylselenocysteine | 0.08 ± 0.03 | Organic beet juice | [71] |
0.20 ± 0.01 | Conventional beet juice | [71] | |
Selenocysteine | 0.27 ± 0.02 | Conventional beet juice | [71] |
Minerals | |||
Iron | 2.57 | Beetroot leaves | [8] |
0.80 | Tubers | [8] | |
Copper | 0.191 | Leaves | [8] |
0.075 | Tuber | [8] | |
Zinc | 0.365 ± 0.015 | Tubers | [8] |
0.38 | Leaves | [8] | |
Magnesium | 23.0 | Tubers | [8] |
70 | Leaves | [8] | |
Carotenoids | |||
A-carotene | 22.0 ± 2.0 | Tubers | [8] |
3.50 ± 0.5 | Leaves | [8] | |
Β-carotene | 0.012 | Leaves | [67] |
0.001 | Leaves | [67] | |
Lycopene | 0.030 | Tubers | [8] |
Lutein + zeaxanthin | 0.001 | Leaves | [8] |
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Montanari, M. A Cultural History of Food in the Medieval Age; Berg Publishing: London, UK, 2012. [Google Scholar]
- Rupp, R. How Carrots Won the Trojan War: Curious (But True) Stories of Common Vegetables; Storey Pub.: North Adams, MA, USA, 2011. [Google Scholar]
- Aykın-Dinçer, E.; Güngör, K.K.; Çağlar, E.; Erbaş, M. The use of beetroot extract and extract powder in sausages as natural food colorant. Int. J. Food Eng. 2020, 17, 75–82. [Google Scholar] [CrossRef]
- Domínguez, R.; Munekata, P.E.S.; Pateiro, M.; Maggiolino, A.; Bohrer, B.; Lorenzo, J.M. Red Beetroot. A Potential Source of Natural Additives for the Meat Industry. Appl. Sci. 2020, 10, 8340. [Google Scholar]
- Costa, A.P.D.; Hermes, V.S.; Rios, A.O.; Flôres, S.H. Minimally processed beetroot waste as an alternative source to obtain functional ingredients. J. Food Sci. Technol. 2017, 54, 2050–2058. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority Panel on Food Additives and Nutrient Sources added to Food. Scientific Opinion on the re-evaluation of beetroot red (E 162) as a food additive. EFSA J. 2015, 13, 4318. [Google Scholar]
- Chen, L.; Zhu, Y.; Hu, Z.; Wu, S.; Jin, C. Beetroot as a functional food with huge health benefits: Antioxidant, antitumor, physical function, and chronic metabolomics activity. Food Sci. Nutr. 2021, 9, 6406–6420. [Google Scholar] [CrossRef] [PubMed]
- Ceclu, L.; Oana-Viorela, N. Red Beetroot: Composition and Health Effects—A Review. J. Nutri. Med. Diet Care 2020, 6, 043. [Google Scholar]
- Fu, Y.; Shi, J.; Xie, S.Y.; Zhang, T.Y.; Soladoye, O.P.; Aluko, R.E. Red Beetroot Betalains: Perspectives on Extraction, Processing, and Potential Health Benefits. J. Agric. Food Chem. 2020, 68, 11595–11611. [Google Scholar] [CrossRef]
- Teixeira da Silva, D.V.; dos Santos Baião, D.; de Oliveira Silva, F.; Genilton Alves, G.; Perrone, D.; Mere Del Aguila, E.; Flosi Paschoalin, V.M. Betanin, a Natural Food Additive: Stability, Bioavailability, Antioxidant and Preservative Ability Assessments. Molecules 2019, 24, 458. [Google Scholar] [CrossRef] [Green Version]
- Georgiev, V.G.; Weber, J.; Kneschke, E.M.; Denev, P.N.; Bley, T.; Pavlov, A.I. Antioxidant activity and phenolic content of betalain extracts from intact plants and hairy root cultures of the red beetroot Beta vulgaris cv. Detroit dark red. Plant Foods Hum. Nutr. 2010, 65, 105–111. [Google Scholar] [CrossRef]
- Madadi, E.; Mazloum-Ravasan, S.; Yu, J.S.; Ha, J.W.; Hamed Hamishehkar, H.; Kim, K.H. Therapeutic Application of Betalains: A Review. Plants 2020, 9, 1219. [Google Scholar] [CrossRef]
- Moreno-Ley, C.M.; Osorio-Revilla, G.; Hernández-Martínez, D.M.; Ramos-Monroy, O.A.; Gallardo-Velázquez, T. Anti-inflammatory activity of betalains: A comprehensive review. Hum. Nutr. Metab. 2021, 25, 200126. [Google Scholar] [CrossRef]
- Wijesinghe, V.N.; Choo, W.S. Antimicrobial Betalains. J. Appl. Microbiol. 2022, 133, 3347–3367. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.L.; Hamid, S.B.S. Beetroot as a Potential Functional Food for Cancer Chemoprevention, a Narrative Review. J. Cancer Prev. 2021, 26, 1–17. [Google Scholar] [CrossRef]
- Lechner, J.F.; Stoner, G.D. Red Beetroot and Betalains as Cancer Chemopreventative Agents. Molecules. 2019, 24, 1602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapadia, G.J.; Rao, G.S.; Cheppail, R.; Akira, I.; Nobutaka, S.; Harukuni, T. Synergistic cytotoxicity of red beetroot (Beta vulgaris L.) extract with doxorubicin in human pancreatic, breast and prostate cancer cell lines. J. Complement. Integr. Med. 2013, 10, 113–122. [Google Scholar] [CrossRef]
- Martinez-Rodrigez, P.; Guerrero-Rubio, M.A.; Henarejos-Escudero, P.; Garcia-Carmona, F.; Gandia-Herrero, F. Health-promoting potential of betalains in vivo and their relevance as functional ingredients: A review. Trends Food Sci. Nutr. 2022, 122, 66–82. [Google Scholar] [CrossRef]
- Polturak, G.; Aharoni, A. “La Vie en Rose”: Biosynthesis, Sources, and Applications of Betalain Pigments. Mol. Plant 2018, 11, 7–22. [Google Scholar] [CrossRef] [Green Version]
- Sadowska-Bartosz, I.; Bartosz, G. Biological properties and applications of betalains. Molecules 2021, 26, 2520. [Google Scholar] [CrossRef]
- Khan, M.I.; Giridhar, P. Plant betalains: Chemistry and biochemistry. Phytochemistry 2015, 117, 267–295. [Google Scholar] [CrossRef]
- Delgado-Vargas, F.; Jimenez, A.R.; Paredes-Lopez, O.; Francis, F.J. Natural pigments: Carotenoids, anthocyanins, and betalains—Characteristics, biosynthesis, processing, and stability. Crit. Rev. Food Sci. Nutr. 2000, 40, 173–289. [Google Scholar] [CrossRef]
- Sawicki, T.; Wiczkowski, W. The effects of boiling and fermentation on betalain profiles and antioxidant capacities of red beetroot products. Food Chem. 2018, 259, 292–303. [Google Scholar] [CrossRef] [PubMed]
- Kujala, T.; Loponen, J.; Pihlaja, K. Betalains and phenolic acids in red beetroot (Beta vulgaris) peel extracts: Extraction and characterization. Z. Für Nat. C 2001, 56, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Sentkowska, A.; Pyrzynska, K. Zwitterionic hydrophilic interaction liquid chromatography coupled to mass spectrometry for analysis of beetroot juice and antioxidant interactions between its bioactive compounds. LWT-Food Sci. Technol. 2018, 93, 641–648. [Google Scholar] [CrossRef]
- Sentkowska, A.; Pyrzynska, K. The influence of thiol addition on selenium stability and antioxidant activity of beetroot juice. Appl. Sci. 2022, 12, 12634. [Google Scholar] [CrossRef]
- Herbach, K.M.; Stintzing, F.C.; Carle, R. Betalain Stability and Degradation—Structural and Chromatic Aspects. J. Food Sci. 2006, 71, R41–R50. [Google Scholar] [CrossRef]
- Kazimierczak, R.; Siłakiewicz, A.; Hallmann, E.; Średnicka-Tober, D.; Rembiałkowska, E. Chemical composition of selected beetroot juices in relation to beetroot production system and processing technology. Not. Bot. Horti Agrobot. 2016, 44, 491–498. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.S.; Ho, C.T.; Zhang, J.; Wan, X.; Zhang, K.; Lim, J. Antioxidants: Different Meanings in Food Science and Health Science. J. Agric. Food Chem. 2018, 66, 3063–3068. [Google Scholar] [CrossRef]
- Slimen, I.B.; Najar, T.I.; Abderrabba, M. Chemical and antioxidant properties of betalains. J. Agric. Food Chem. 2017, 65, 675–689. [Google Scholar] [CrossRef]
- Taira, J.; Tsuchida, E.; Katoh, M.C.; Uehara, M.; Ogi, T. Antioxidant capacity of betacyanins as radical scavengers for peroxyl radical and nitric oxide. Food Chem. 2015, 166, 531–536. [Google Scholar] [CrossRef]
- Fernando, G.S.N.; Sergeeva, N.N.; Frutos, M.J.; Marshall, L.J.; Boesch, C. Novel approach for purification of major betalains using flash chromatography and comparison of radical scavenging and antioxidant activities. Food Chem. 2022, 385, 132632. [Google Scholar] [CrossRef]
- Mikołajczyk-Bator, K.; Czapski, J. Effect of pH Changes on Antioxidant Capacity and the Content of Betalain Pigments During the Heating of a Solution of Red Beet Betalains. Pol. J. Food Nutr. Sci. 2017, 67, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Kapadia, G.J.; Tokuda, H.; Konoshima, T.; Nishino, H. Chemoprevention of lung and skin cancer by Beta vulgaris (beet) root extract. Cancer Lett. 1996, 100, 211–214. [Google Scholar] [CrossRef]
- Zhang, Q.; Pan, J.; Wang, Y.; Lubet, R.; You, M. Beetroot red (betanin) inhibits vinyl carbamate- and benzo(a)pyrene-induced lung tumorigenesis through apoptosis. Mol. Carcinog. 2013, 52, 686–691. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Yang, Y.; Guo, T.; Veeraraghavan, V.P.; Wang, X. Potential chemotherapeutic effect of betalain against human non-small cell lung cancer through PI3K/Akt/mTOR signaling pathway. Environ. Toxic 2021, 36, 1011–1020. [Google Scholar] [CrossRef]
- Martinez, R.M.; Longhi-Balbinot, D.T.; Zarpelon, A.C.; Staurengo-Ferrari, L.; Baracat, M.M.; Georgetti, S.R.; Sassonia, R.C.; Verri, W.A., Jr.; Casagrande, R. Anti-inflammatory activity of betalain-rich dye of Beta vulgaris: Effect on edema, leukocyte recruitment, superoxide anion and cytokine production. Arch. Pharm. Res. 2015, 38, 494–504. [Google Scholar] [CrossRef] [PubMed]
- Macias-Ceja, D.C.; Cosín-Roger, J.; Ortiz-Masia, D.; Salvador, P.; Hernandez, C.; Esplugues, J.V.; Calatayud, S.; Barrachina, M.D. Stimulation of autophagy prevents intestinal mucosal inflammation and ameliorates murine colitis. Br. J. Pharma. 2017, 174, 2501–2511. [Google Scholar] [CrossRef]
- Dai, R.; Wang, Y.; Wang, N. Betalain alleviates airway inflammation in an ovalbumin-induced-asthma mouse model via the TGF-β1/Smad signaling pathway. J. Environ. Pathol. Toxicol. Oncol. 2021, 40, 11–21. [Google Scholar] [CrossRef]
- Wróblewska, M.; Juskiewicz, J.; Wiczkowski, W. Physiological properties of beetroot crisps applied in standard and dyslipidaemic diets of rats. Lip. Health Dis. 2011, 10, 178. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Liang, X.; Tian, Z.; Ma, Y.; Sun, C. Betalain exerts cardioprotective and anti-inflammatory effects against the experimental model of heart failure. Hum. Exp. Toxic. 2021, 40, S16–S28. [Google Scholar] [CrossRef]
- Rahimi, P.; Mesbah-Namin, S.A.; Ostadrahimi, A.; Abedimanesh, S.; Separham, M.A. Effects of betalains on atherogenic risk factors in patients with atherosclerotic cardiovascular disease. Food Func. 2019, 10, 8286–8297. [Google Scholar] [CrossRef]
- Han, J.; Tan, C.; Wang, Y.; Yang, S.; Tan, D. Betanin reduces the accumulation and cross-links of collagen in high-fructose-fed rat heart through inhibiting non-enzymatic glycation. Chem.-Biol. Inter. 2015, 227, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Indumathi, D.; Sujithra, K.; Srinivasan, S.; Vinothkumar, V. Betanin exhibits significant potential as an antihyperglycemic and attenuating the glycoprotein components in streptozotocin–nicotinamide-induced experimental rats. Toxic. Mech. Met. 2018, 28, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Bell, T.; West, O.; Howatson, D.J.; Stevenson, E.J. The effects of beetroot juice supplementation on indices of muscle damage following eccentric exercise. Euro. J. Appl. Phys. 2016, 116, 353–362. [Google Scholar]
- Aliahmadi, M.; Amiri, F.; Bahrami, L.S.; Hosseini, A.F.; Abiri, B.; Vafa, M. Effects of raw red beetroot consumption on metabolic markers and cognitive function in type 2 diabetes patients. J. Diabetes Metab. Disord. 2021, 20, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Płatosz, N.; Sawicki, T.; Wiczkowski, W. Profile of phenolic acids and flavonoids of red beet and its fermentation products. Does long-term consumption of fermented beetroot juice affect phenolics profile in human blood plasma and urine? Pol. J. Food Nutr. Sci. 2020, 70, 55–65. [Google Scholar] [CrossRef]
- Guiné, R.P.F.; Gonçalves, F.; Lerat, C.; Idrissi, T.E.; Rodrigi, E.; Correia, P.M.R.; Gonçalves, J.C. Extraction of phenolic compounds with antioxidant activity from beetroot (Beta vulgaris L.). Curr. Nutr. Food Sci. 2018, 14, 350–357. [Google Scholar] [CrossRef]
- Wruss, J.; Waldenberger, G.; Huemer, S.; Uygun, P.; Peter Lanzerstorfer, P.; Müller, U.; Höglinger, O.; Weghuber, J. Compositional characteristics of commercial beetroot products and beetroot juice prepared from seven beetroot varieties grown in Upper Austria. J. Food Comp. Anal. 2015, 42, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Kavalcová, P.; Bystrická, J.; Tomáš, J.; Kovarovič, J.; Lenková, M. The content of total polyphenols and antioxidant activity in red beetroot. Potravinárstvo Sci. J. Food Ind. 2015, 9, 77–83. [Google Scholar] [CrossRef]
- Vulic, J.; Canadanovic-Brunet, J.; Cetkovic, G.; Tumbas, V.; Djilas, S.; Cetojevic-Simin, D.; Canadanovic, V. Antioxidant and cell growth activities of beet root pomace extracts. J. Funct. Foods 2012, 4, 670–678. [Google Scholar] [CrossRef]
- Kujala, T.S.; Loponen, J.M.; Kika, K.D.; Pihlaja, K. Phenolics and betacyanins in red beetroot (Beta vulgaris) root: Distribution and effect of cold storage on the content of total phenolics and three individual compounds. J. Agric. Food Chem. 2000, 48, 5338–5342. [Google Scholar] [CrossRef]
- Pratimasari, D.; Puspitasari, D. Identification of flavonoid compounds from purified extract of beetroot leaf (Beta vulgaris L.). Indones. J. Glob. Health Res. 2022, 2, 811–816. [Google Scholar]
- Boyle, S.P.; Dobson, V.L.; Duthie, S.J.; Hinselwood, D.C.; Kyle, J.A.M.; Collins, A.R. Bioavailability and efficiency of rutin as an antioxidant: A human supplementation study. Eur. J. Clin. Nutr. 2000, 54, 774–782. [Google Scholar] [CrossRef] [PubMed]
- Sentkowska, A.; Pyrzyńska, K. Simultaneous determination of vitamin B6 and catechins in dietary supplements by ZIC-HILIC chromatography and their antioxidant interactions. Europ. Food Res. Technol. 2020, 246, 1609–1615. [Google Scholar] [CrossRef]
- Vulic, J.J.; Cebovic, T.N.; Canadanovic, V.M.; Cetkovic, G.S.; Djilas, S.M.; Canadanovic-Brunet, J.M.; Velicanski, A.S.; Cvetkovic, D.D.; Tumbas, V. Antiradical, antimicrobial and cytotoxic activities of commercial beetroot pomace. Food Funct. 2013, 4, 713–721. [Google Scholar] [CrossRef]
- Kazimierczak, R.; Hallmann, E.; Treščinska, V.; Rembiałkowska, E. Estimation of the nutritive value of two red beet (Beta vulgaris) varieties from organic and conventional cultivation. J. Res. Appl. Agric. Eng. 2011, 56, 206–210. [Google Scholar]
- Jabłońska-Ceglarek, R.; Rosa, R. Influence of green manures on the quantity and quality of the yield of red beet. Hortorum Cultus 2003, 2, 21–30. [Google Scholar]
- Kazimierczak, R.; Hallmann, E.; Lipowski, J.; Drela, N.; Kowalik, A.; Püssa, T.; Matt, D.; Luik, A.; Gozdowski, D.; Rembiałkowska, E. Beetroot (Beta vulgaris L.) and naturally fermented beetroot juices from organic and conventional production: Metabolomics, antioxidant levels and anticancer activity. J. Sci. Food Agric. 2014, 94, 2618–2629. [Google Scholar] [CrossRef]
- Rembiałkowska, E. Health and sensory quality of potatoes and selected vegetables from organic farms. Acta Hortic. 2003, 604, 473–477. [Google Scholar]
- Sikora, M.; Klonowska, K.; Hallmann, E.; Rembiałkowska, E. Nutritive quality of red beet roots from organic and conventional production. In The Impact of Organic Production Methods on the Vegetable Product Quality; Rembiałkowska, E., Ed.; SGGW: Warsaw, Poland, 2010; pp. 209–220. [Google Scholar]
- Szopińska, A.A.; Gawęda, M. Comparison of yield and quality of red beet roots cultivated using conventional, integrated and organic method. J. Hortic. Res. 2013, 21, 107–114. [Google Scholar] [CrossRef]
- Dimić, D.; Milenković, D.; Marković Dimitrić, J.; Marković, Z. Antiradical activity of catecholamines and metabolites of dopamine:theoretical and experimental study. Phys. Chem. Chem. Phys. 2017, 19, 12970. [Google Scholar] [CrossRef]
- Tosovic, J.; Marković, S.; Dimitrić Marković, J.M.; Mojović, M.; Milenković, D. Antioxidative mechanism in chlorogenic acid. Food Chem. 2017, 237, 390–398. [Google Scholar] [CrossRef]
- Jeyanthi, R.; Sharmila, S.; Das, M.P.; Seshiah, C. Extraction and purification of carotenoids from vegetables. J. Chem. Pharma. Res. 2014, 6, 594–598. [Google Scholar]
- Paliwal, H.; Goyal, S.; Singla, S.; Daksh, S. Pigments from natural sources: An overview. Inter. J. Res. Pharma. Pharm. Sci. 2016, 3, 1–12. [Google Scholar]
- Odoh, U.E.; Okoro, E.C. Quantitative Phytochemical, Proximate/Nutritive Composition Analysis of Beta vulgaris Linnaeus (Chenopodiaceae). Int. J. Curr. Res. 2013, 5, 3723–3728. [Google Scholar]
- Rossetto, M.R.; Vianello, F.; da Rocha, S.A.; Lima, G.P.P. Antioxidant substances and pesticide in parts of beet organic and conventional manure. Afr. J. Plant Sci. 2009, 3, 245–253. [Google Scholar]
- Ismail, A.; Fun, C.S. Determination of vitamin C, β-carotene and riboflavin contents in five green vegetables organically and conventionally grown. Malays. J. Nutr. 2003, 9, 31–39. [Google Scholar] [PubMed]
- Petek, M.; Custic, M.H.; Toth, N.; Slunjski, S.; Coga, L.; Pavlovic, I.; Karazija, T.; Lazarevic, B.; Cvetkovic, S. Nitrogen and crude proteins in beetroot (Beta vulgaris var. conditiva) under different fertilization treatments. Not. Bot. Horti Agrobot. 2012, 40, 215–219. [Google Scholar] [CrossRef] [Green Version]
- Sentkowska, A.; Pyrzynska, K. Determination of selenium species in beetroot juices. Heliyon 2020, 6, e04194. [Google Scholar] [CrossRef] [PubMed]
- Adadi, P.; Barakova, N.V.; Muravyov, K.Y.; Krivoshapkina, E.F. Designing selenium functional foods and beverages: A review. Food Res. Inter. 2019, 120, 708–772. [Google Scholar] [CrossRef] [PubMed]
- Kieliszek, M. Selenium–fascinating microelement, properties and sources in food. Molecules 2019, 24, 1298. [Google Scholar] [CrossRef] [Green Version]
- Rayman, M.P. Selenium intake, status, and health: A complex relationship. Hormones 2020, 19, 9–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sentkowska, A.; Pyrzynska, K. Investigation of antioxidant activity of selenium compounds and their mixtures with tea polyphenols. Mol. Biol. Rep. 2019, 46, 3019–3023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neha, P.; Jain, S.K.; Jain, H.K.; Mittal, H.K.; doh, U.E.; Okoro, E.C. Chemical and functional properties of Beetroot (Beta vulgaris L.) for product development: A review. Int. J. Chem. Stud. 2018, 6, 3190–3194. [Google Scholar]
- Haytowitz, D.B.; Ahuja Jaspreet, K.C.; Wu, X.; Somanchi, M.; Nickle, M.; Quyen, A.N.; Roseland, J.M.; Williams, J.R.; Patterson, K.Y.; Ying, L.; et al. USDA National Nutrient Database for Standard Reference, Legacy Release. Nutrient Data Laboratory, Beltsville Human Nutrition Research Center, ARS, USDA. 2019. Available online: https://data.nal.usda.gov/dataset/usda-national-nutrient-database-standard-reference-legacy-release (accessed on 30 May 2023).
- Clifford, T.; Howatson, G.; West, D.J.; Stevenson, E.J. The potential benefits of red beetroot supplementation in health and disease. Nutrients 2015, 7, 2801–2822. [Google Scholar] [CrossRef] [Green Version]
- dos Santos Baiao, D.; d’El-Rei, J.; Alves, G.; Neves, M.F.; Perrone, D.; Mere Del Aguila, E.; Flosi Paschoalin, V.M. Chronic effects of nitrate supplementation with a newly designed beetroot formulation on biochemical and hemodynamic parameters of individuals presenting risk factors for cardiovascular diseases: A pilot study. J. Funct. Foods 2019, 58, 85–94. [Google Scholar] [CrossRef]
- Babarykin, D.; Smirnova, G.; Pundinsh, I.; Vasiljeva, S.; Krumina, G.; Agejchenko, V. Red beet (Beta vulgaris) impact on human health. J. Biosci. Med. 2019, 7, 61–79. [Google Scholar]
- Webb, A.J.; Patel, N.; Loukogeorgakis, S.; Okorie, M.; Aboud, Z.; Misra, S.; Rashid, R.; Miall, P.; Deanfield, J.; Benjamin, N.; et al. Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite. Hypertension 2008, 51, 784–790. [Google Scholar] [CrossRef] [Green Version]
- Jonvik, K.L.; Nyakayiru, J.; Pinckaers, P.J.M.; Senden, J.; van Loon, L.; Verdijk, L.B. Nitrate-rich vegetables increase plasma nitrate and nitrite concentrations and lower blood pressure in healthy adults. J. Nutr. 2016, 146, 986–993. [Google Scholar] [CrossRef] [Green Version]
- Volino-Souza, M.; De Oliveira, G.; Alvares, T. A single dose of beetroot juice improves endothelial function but not tissue oxygenation in pregnant women: A randomised clinical trial. Br. J. Nutr. 2018, 120, 1006–1013. [Google Scholar] [CrossRef] [Green Version]
- Eggebeen, J.; Kim-Shapiro, D.B.; Haykowsky, M.; Morgan, T.M.; Basu, S.; Brukaker, P.; Kitzman, D.W. One week of daily dosing with beetroot juice improves submaximal endurance and blood pressure in older patients with heart failure and preserved ejection fraction. Heart Fail. 2016, 4, 428–437. [Google Scholar] [CrossRef]
- Woessner, M.N.; Van Bruggen, M.D.; Pieper, C.F.; Sloane, R.; Kraus, W.E.; Gow, A.J.; Allen, J.D. Beet the best? Dietary inorganic nitrate to augment exercise training in lower extremity peripheral artery disease with intermittent claudication. Circ. Res. 2018, 123, 654–659. [Google Scholar] [CrossRef] [PubMed]
- Notay, K.; Incognito, A.V.; Millar, P.J. Acute beetroot juice supplementation on sympathetic nerve activity: A randomized, double-blind, placebo-controlled proof-of-concept study. Am. J. Phys. Heart Circul. Physiol. 2017, 313, H59–H65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallardo, E.J.; Coggan, A.R. What is in your beet juice? Nitrate and nitrite content of beet juice products marketed to athletes. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 345–349. [Google Scholar] [CrossRef] [Green Version]
- dos Santos Baião, D.; Conte-Junior, C.A.; Paschoalin, V.M.F.; Alvares, T.S. Quantitative and comparative contents of nitrate and nitrite in Beta vulgaris L. by reversed-phase high-performance liquid chromatography-fluorescence. Food Anal. Meth. 2016, 9, 1002–1008. [Google Scholar] [CrossRef] [Green Version]
- Oh, C.; Park, J.-E.; Son, Y.-J.; Nho, C.W.; Park, N.I.; Yoo, G. Light spectrum effects on the ions, and primary and secondary metabolites of red beets (Beta vulgaris L.). Agronomy 2022, 12, 1699. [Google Scholar] [CrossRef]
- Bargagli, M.; Tio, M.C.; Waikar, S.S.; Ferraro, P.M. Dietary Oxalate Intake and Kidney Outcomes. Nutrients 2020, 12, 2673. [Google Scholar] [CrossRef]
- Desseva, I.; Stoyanova, M.; Petkova, N.; Mihaylova, D. Red beetroot juice phytochemicals bioaccessibility: An in vitro approach. Pol. J. Food Nutr. Sci. 2020, 70, 45–53. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sentkowska, A.; Pyrzyńska, K. Old-Fashioned, but Still a Superfood—Red Beets as a Rich Source of Bioactive Compounds. Appl. Sci. 2023, 13, 7445. https://doi.org/10.3390/app13137445
Sentkowska A, Pyrzyńska K. Old-Fashioned, but Still a Superfood—Red Beets as a Rich Source of Bioactive Compounds. Applied Sciences. 2023; 13(13):7445. https://doi.org/10.3390/app13137445
Chicago/Turabian StyleSentkowska, Aleksandra, and Krystyna Pyrzyńska. 2023. "Old-Fashioned, but Still a Superfood—Red Beets as a Rich Source of Bioactive Compounds" Applied Sciences 13, no. 13: 7445. https://doi.org/10.3390/app13137445
APA StyleSentkowska, A., & Pyrzyńska, K. (2023). Old-Fashioned, but Still a Superfood—Red Beets as a Rich Source of Bioactive Compounds. Applied Sciences, 13(13), 7445. https://doi.org/10.3390/app13137445