Possible Health Effects of Road Dust in Winter: Studies in Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. General Characteristics of the Sampling Regions
2.3. Sample Preparation
Chemical Analysis
2.4. Health Risk Assessment
2.4.1. Exposure Dose
2.4.2. Non-Cancerogenic Health Risk
2.4.3. Risk Calculation
2.5. Calculation of Other Indices
2.5.1. Single Pollution Index
2.5.2. Pollution Load Index
2.5.3. Enrichment Factor
2.5.4. The Geoaccumulation Index
2.6. Statistical Analysis
3. Results
3.1. Metal Concentrations in URD
3.2. Health Risk Assessment
ADD Values
3.3. Other Indices
Mn | Ni | Cu | Zn | As | Cr | Mg | Co | Pb | Cd | V | Al | References | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Upper Silesia, Poland | 622 | 29 | 70 | 7787 | 409 | 155 | 53,747 | 4 | 586 | 4 | 19 | 91,923 | This work |
Lower Silesia, Poland | 260 | 57 | 50 | 291 | 5 | 108 | 6177 | 7 | 29 | 0.3 | 19 | 5980 | This work |
Upper Silesia, Poland | 1619 | 34 | 175 | 2683 | 109 | 106 | 21 | - | - | - | - | 22 | [25] |
Lower Silesia, Poland | 258 | 50 | 126 | 153 | 3 | 77 | 6700 | - | - | - | - | 5133 | [25] |
Lublin, Poland | - | 27 | 66 | 202 | - | 53 | - | - | 23 | - | - | - | [19] |
Kumasi, Ghana | 164 | 44 | 50 | 280 | 6 | 70 | - | - | 47 | - | - | - | [49] |
Changchun, China | 367 | 35 | 50 | 162 | 36 | 63 | 3430 | 37 | 73 | 29 | 60 | 6080 | [51] |
Beijing, China | 531 | 36 | 63 | 239 | 5 | 85 | - | - | 66 | 0 | - | - | [48] |
Manchester, UK | 282 | - | 113 | 653 | - | - | - | 265 | - | - | - | - | [52] |
Delhi, India | - | 36 | 192 | 284 | - | 149 | - | 121 | 3 | - | - | - | [53] |
Jazd, Iran | 2256 | 4 | 9 | 43 | - | - | - | 3 | 19 | 2 | - | - | [54] |
Muscat, Oman | - | 9 | 68 | 181 | 5 | 3 | - | 20 | 19 | - | - | - | [50] |
Oslo, Norway | 833 | 41 | 123 | 412 | - | - | - | 19 | 180 | 1 | - | - | [55] |
Madrid, Spain | 362 | 44 | 188 | - | - | 61 | - | 3 | 1927 | - | 17 | - | [55] |
Luanda, Angola | 258 | 10 | 42 | 317 | 5 | 26 | 4485 | 3 | 351 | 1 | 20 | 4839 | [56] |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vlasov, D.; Ramírez, O.; Luhar, A. Road Dust in Urban and Industrial Environments: Sources, Pollutants, Impacts, and Management. Atmosphere 2022, 13, 607. [Google Scholar] [CrossRef]
- Haynes, H.M.; Taylor, K.G.; Rothwell, J.; Byrne, P. Characterisation of road-dust sediment in urban systems: A review of a global challenge. J. Soils Sediments 2020, 20, 4194–4217. [Google Scholar] [CrossRef]
- Gajdzik, B. Emisja i redukcja przemysłowych zanieczyszczeń powietrza w Polsce i województwie śląskim. Probl. Ekol. 2008, 12, 163–166. [Google Scholar]
- Janka, R.M. Zanieczyszczenia Pyłowe i Gazowe: Podstawy Obliczenia i Sterowania; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2014. [Google Scholar]
- Galatioto, F.; Masey, N.; Murrells, T.; Hamilton, S.; Pommier, M. Review of Road Dust Resuspension Modelling Approaches and Comparisons Analysis for a UK Case Study. Atmosphere 2022, 13, 1403. [Google Scholar] [CrossRef]
- Dey, S.; Mehta, N. Automobile pollution control using catalysis. Resour. Environ. Sustain. 2020, 2, 100006. [Google Scholar] [CrossRef]
- Muthu, M.; Gopal, J.; Kim, D.-H.; Sivanesan, I. Reviewing the Impact of Vehicular Pollution on Road-Side Plants—Future Perspectives. Sustainability 2021, 13, 5114. [Google Scholar] [CrossRef]
- Drąg, Ł. Modelowanie emisji i rozprzestrzeniania się zanieczyszczeń ze środków transportu drogowego. Arch. Motoryz. 2007, 1, 21–41. [Google Scholar]
- Biały, W.; Czerwińska-Lubszczyk, A.; Czerwiński, S. Ekologiczne węgle produkcji PGG w aspekcie ochrony powietrza. Syst. Wspomagania Inż. Prod. 2019, 8, 334–347. [Google Scholar]
- Xu, F.; Giovanoulis, G.; van Waes, S.; Padilla-Sanchez, J.A.; Papadopoulou, E.; Magnér, J.; Haug, L.S.; Neels, H.; Covaci, A. Comprehensive Study of Human External Exposure to Organophosphate Flame Retardants via Air, Dust, and Hand Wipes: The Importance of Sampling and Assessment Strategy. Environ. Sci. Technol. 2016, 50, 7752–7760. [Google Scholar] [CrossRef]
- Chen, S.; Jiang, N.; Huang, J.; Xu, X.; Zhang, H.; Zang, Z.; Huang, K.; Xu, X.; Wei, Y.; Guan, X.; et al. Quantifying contributions of natural and anthropogenic dust emission from different climatic regions. Atmos. Environ. 2018, 191, 94–104. [Google Scholar] [CrossRef]
- Hou, S.; Zheng, N.; Tang, L.; Ji, X.; Li, Y.; Hua, X. Pollution characteristics, sources, and health risk assessment of human exposure to Cu, Zn, Cd and Pb pollution in urban street dust across China between 2009 and 2018. Environ. Int. 2019, 128, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Bojakowska, I. Wpływ Czynnika Antropogenicznego na Procesy Geochemiczne w Powierzchniowych Wartstwach Litosfery; Państwowy Instytut Geologiczny: Warsaw, Poland, 1994. [Google Scholar]
- Malec, A.; Borowski, G. The hazards of dusting and monitoring of atmospheric air. Inż. Ekol. 2016, 2016, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Walczak, B. Zawartość fosforanów w pyle drogowym w Zielonej Górze. Zesz. Naukowe. Inż. Sr./Uniw. Zielonogórs. 2010, 140, 42–49. [Google Scholar]
- Piontek, M.; Walczak, B.; Czyżewska, W.; Lechów, H. Miedź, kadm i cynk w pyle drogowym miast oraz określenie toksyczności związków tych metali metodą biologiczną. Kosmos. Probl. Nauk. Biol. 2012, 61, 409–415. [Google Scholar]
- Wróbel, M.; Rybak, J.; Rogula-Kozłowska, W. Przykłady wykorzystania testu OSTRACODTOXKIT FTM do oceny zanieczyszczenia pyłów drogowych metalami w aglomeracji wrocławskiej. Sci. Rev. Eng. Environ. Stud. 2020, 29, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Kiebała, A.; Kozieł, M.; TELECKA, M.; Zgłobicki, W. Wielowymiarowa analiza statystyczna metali ciężkich w pyle drogowym na obszarze Lublina. J. Civ. Eng. Environ. Archit. 2015, XXXII, 219–232. [Google Scholar] [CrossRef]
- Kiebała Kozieł, M.; Zgłobicki, W. Cr, Cu, Ni, Pb and Zn in road dust in the Lublin area. Inż. Ochr. Sr. 2015, 18, 299–310. [Google Scholar]
- Krzeszowiak, J.; Michalak, A.; Pawlas, K. Zanieczyszczenie powietrza we Wrocławiu i potencjalne zagrożenie dla zdrowia z tym związane. Environ. Med. 2015, 18, 66–73. [Google Scholar]
- Świetlik, R.; Trojanowska, M.; Strzelecka, M.; Bocho-Janiszewska, A. Fractionation and mobility of Cu, Fe, Mn, Pb and Zn in the road dust retained on noise barriers along expressway—A potential tool for determining the effects of driving conditions on speciation of emitted particulate metals. Environ. Pollut. 2015, 196, 404–413. [Google Scholar] [CrossRef]
- Gustafsson, M.; Blomqvist, G.; Järlskog, I.; Lundberg, J.; Janhäll, S.; Elmgren, M.; Johansson, C.; Norman, M.; Silvergren, S. Road dust load dynamics and influencing factors for six winter seasons in Stockholm, Sweden. Atmos. Environ. X 2019, 2, 100014. [Google Scholar] [CrossRef]
- Kaleta, D. State of air pollution in Silesia province including low emission sources. Archit. Civ. Eng. Environ. 2014, 7, 79–87. [Google Scholar]
- Marynowski, L.; Pięta, M.; Janeczek, J. Composition and source of polycyclic aromatic compounds in deposited dust from selected sites around the Upper Silesia, Poland. Geol. Q. 2004, 48, 169–180. [Google Scholar]
- Rybak, J.; Wróbel, M.; Bihalowicz, J.S.; Rogula-Kozlowska, W. Selected metals in Urban road dust: Upper and lower Silesia case study. Atmosphere 2020, 11, 290. [Google Scholar] [CrossRef] [Green Version]
- U.S. EPA. Method 200.8, Revision 5.4: Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma—Mass Spectrometry; U.S. Environmental Protection Agency: Washington, DC, USA, 1994.
- U.S. EPA. Policy Assessment for the Review of the Particulate Matter National Ambient Air Quality Standards; U.S. Environmental Protection Agency: Washington, DC, USA, 2011; Volume EPA 452/R.
- Kowalska, J.B.; Mazurek, R.; Gąsiorek, M.; Zaleski, T. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination—A review. Environ. Geochem. Health 2018, 40, 2395–2420. [Google Scholar] [CrossRef] [Green Version]
- Wedepohl, K.H. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Barbieri, M. The Importance of Enrichment Factor (EF) and Geoaccumulation Index (Igeo) to Evaluate the Soil Contamination. J. Geol. Geophys. 2016, 5, 237. [Google Scholar] [CrossRef]
- Szalińska, E.; Kaperczak, A.; Czaplicka-Kotas, A. Badania zawartości metali ciężkich w osadach dennych dopływów Jeziora Goczałkowickiego. Ochr. Sr. 2010, 32, 21–25. [Google Scholar]
- Reimann, C.; De Caritat, P. Intrinsic flaws of element enrichment factors (EFs) in environmental geochemistry. Environ. Sci. Technol. 2000, 34, 5084–5091. [Google Scholar] [CrossRef]
- Bern, C.R.; Walton-Day, K.; Naftz, D.L. Improved enrichment factor calculations through principal compo-nent analysis: Examples from soils near breccia pipe uranium mines, Arizona, USA. Environ. Pollut. 2019, 248, 90–100. [Google Scholar] [CrossRef]
- Yongming, H.; Peixuan, D.; Junji, C.; Posmentier, E. Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Sci. Total Environ. 2006, 355, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Rozpondek, R.; Rozpondek, K.; Kacprzak, M. Rodzaje oraz zastosowanie wskaźników oceny stopnia zanieczyszczeń gleb. Bad. Rozw. Młodych Nauk. Polsce 2018, 9, 64–69. [Google Scholar]
- Muller, G. Schwermetalle in den Sedimenten des Rheins: Veranderungen seit 1971. Umschau 1979, 79, 778–783. [Google Scholar]
- Genchi, G.; Carocci, A.; Lauria, G.; Sinicropi, M.S.; Catalano, A. Nickel: Human Health and Environmental Toxicology. Int. J. Environ. Res. Public Health 2020, 17, 679. [Google Scholar] [CrossRef] [Green Version]
- Kleszcz, K.; Karoń, I.; Zagrodzki, P.; Paśko, P. Arsenic, cadmium, lead and thallium in coal ash from individual household furnaces. J. Mater. Cycles Waste Manag. 2021, 23, 1801–1809. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Arsenic, Metals, Fibres and Dusts; (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 100C). Arsenic and Arsenic Compounds.; International Agency for Research on Cancer: Lyon, France, 2012. Available online: https://www.ncbi.nlm.nih.gov/books/NBK304380/ (accessed on 27 September 2022).
- Edwards, H.M.; Baker, D.H. Bioavailability of zinc in several sources of zinc oxide, zinc sulfate, and zinc metal. J. Anim. Sci. 1999, 77, 2730. [Google Scholar] [CrossRef]
- Rybak, J. Accumulation of Major and Trace Elements in Spider Webs. Water Air Soil Pollut. 2015, 226, 105. [Google Scholar] [CrossRef] [Green Version]
- Alasfar, R.H.; Isaifan, R.J. Aluminum environmental pollution: The silent killer. Environ. Sci. Pollut. Res. 2021, 28, 44587–44597. [Google Scholar] [CrossRef]
- Aguilera, A.; Cortés, J.L.; Delgado, C.; Aguilar, Y.; Aguilar, D.; Cejudo, R.; Quintana, P.; Goguitchaichvili, A.; Bautista, F. Heavy Metal Contamination (Cu, Pb, Zn, Fe, and Mn) in Urban Dust and its Possible Ecological and Human Health Risk in Mexican Cities. Front. Environ. Sci. 2022, 10, 195. [Google Scholar] [CrossRef]
- Rødland, E.S.; Lind, O.C.; Reid, M.J.; Heier, L.S.; Okoffo, E.D.; Rauert, C.; Thomas, K.V.; Meland, S. Cassandra Rauert, Kevin Thomas, Sondre Meland, Occurrence of tire and road wear particles in urban and peri-urban snowbanks, and their potential environmental implications. Sci. Total. Environ. 2022, 824, 153785. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.; Li, X.-L.; Ma, K.; Liang, S.-X. Pollution characteristics of metal pollutants in PM2.5 and comparison of risk on human health in heating and non-heating seasons in Baoding, China. Ecotoxicol. Environ. Saf. 2018, 170, 166–171. [Google Scholar] [CrossRef]
- Başak, B.; Alagha, O. Trace metals solubility in rainwater: Evaluation of rainwater quality at a watershed area, Istanbul. Environ. Monit. Assess. 2010, 167, 493–503. [Google Scholar] [CrossRef] [PubMed]
- Rogula-Kozłowska, W.; Sówka, I.; Pachurka, Ł.; Chlebowska-Styś, A. Seasonal variations of PM2.5 and PM10 concentrations and inhalation exposure from PM-bound metals (As, Cd, Ni): Fi rst studies in Poznań (Poland). Arch. Environ. Prot. 2023, 44, 86–95. [Google Scholar] [CrossRef]
- Men, C.; Wang, Y.; Liu, R.; Wang, Q.; Miao, Y.; Jiao, L.; Shoaib, M.; Shen, Z. Temporal variations of levels and sources of health risk associated with heavy metals in road dust in Beijing from May 2016 to April 2018. Chemosphere 2020, 270, 129434. [Google Scholar] [CrossRef] [PubMed]
- Nkansah, M.A.; Darko, G.; Dodd, M.; Opoku, F.; Essuman, T.B.; Antwi-Boasiako, J. Assessment of pollution levels, potential ecological risk and human health risk of heavy metals/metalloids in dust around fuel filling stations from the Kumasi Metropolis, Ghana. Cogent Environ. Sci. 2017, 3, 1412153. [Google Scholar] [CrossRef]
- Al-Shidi, H.K.; Al-Reasi, H.A.; Sulaiman, H. Heavy metals levels in road dust from Muscat, Oman: Relationship with traffic volumes, and ecological and health risk assessments. Int. J. Environ. Health Res. 2022, 32, 264–276. [Google Scholar] [CrossRef]
- Li, Z. Health risk characterization of maximum legal exposures for persistent organic pollutant (POP) pesticides in residential soil: An analysis. J. Environ. Manag. 2018, 205, 163–173. [Google Scholar] [CrossRef]
- Robertson, D.J.; Taylor, K.G.; Hoon, S.R. Geochemical and mineral magnetic characterisation of urban sediment particulates, Manchester, UK. Appl. Geochem. 2003, 18, 269–282. [Google Scholar] [CrossRef]
- Rajaram, B.; Suryawanshi, P.V.; Bhanarkar, A.D.; Rao, C.V.C. Heavy metals contamination in road dust in Delhi city, India. Environ. Earth Sci. 2014, 72, 3929–3938. [Google Scholar] [CrossRef]
- Esfandiari, M.; Sodaiezadeh, H.; Ardakani, M.A.H.; Mokhtari, M.H. Determination of heavy metal pollutions in the atmospheric falling dust by multivariate analysis. Casp. J. Environ. Sci. 2019, 17, 199–211. [Google Scholar]
- De Miguel, E.; Llamas, J.F.; Chacón, E.; Berg, T.; Larssen, S.; Røyset, O.; Vadset, M. Origin and patterns of distribution of trace elements in street dust: Unleaded petrol and urban lead. Atmos. Environ. 1997, 31, 2733–2740. [Google Scholar] [CrossRef]
- Ferreira-Baptista, L.; De Miguel, E. Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmos. Environ. 2005, 39, 4501–4512. [Google Scholar] [CrossRef] [Green Version]
Mn | Ni | Cu | Zn | As | Cr | Mg | Co | Pb | Cd | V | |
---|---|---|---|---|---|---|---|---|---|---|---|
Adults | |||||||||||
ADDing | 8.76 × 102 | 3.35 × 101 | 9.85 × 101 | 1.1 × 104 | 3.84 × 102 | 2.18 × 102 | 7.57 × 104 | 6.02 × 100 | 8.25 × 102 | 6.15 × 100 | 2.71 × 101 |
ADDinh | 6.31 × 10−2 | 2.41 × 10−3 | 7.09 × 10−3 | 7.89 × 10−1 | 2.76 × 10−2 | 1.57 × 10−2 | 5.45 × 100 | 4.33 × 10−4 | 5.94 × 10−2 | 4.42 × 10−4 | 1.95 × 10−3 |
ADDderm | 1.75 × 101 | 6.68 × 10−1 | 1.96 × 100 | 2.19 × 102 | 7.66 × 100 | 4.34 × 100 | 1.51 × 103 | 1.2 × 10−1 | 1.65 × 101 | 1.23 × 10−1 | 5.4 × 10−1 |
Children | |||||||||||
ADDing | 2.05 × 103 | 7.81 × 101 | 2.30 × 102 | 2.56 × 104 | 8.96 × 102 | 5.08 × 102 | 1.77 × 105 | 1.4 × 101 | 1.93 × 103 | 1.43 × 101 | 6.32 × 101 |
ADDinh | 1.12 × 10−1 | 4.27 × 10−3 | 1.26 × 10−2 | 1.4 × 100 | 4.90 × 10−2 | 2.78 × 10−2 | 9.66 × 100 | 7.68 × 10−4 | 1.05 × 10−1 | 7.84 × 10−4 | 3.45 × 10−3 |
ADDderm | 1.15 × 101 | 4.37 × 10−1 | 1.29 × 100 | 1.43 × 102 | 5.02 × 100 | 2.84 × 100 | 9.9 × 102 | 7.86 × 10−2 | 1.08 × 101 | 8.03 × 10−2 | 3.54 × 10−1 |
Mn | Ni | Cu | Zn | As | Cr | Mg | Co | Pb | Cd | V | |
---|---|---|---|---|---|---|---|---|---|---|---|
Adults | |||||||||||
ADDing | 3.66 × 102 | 8.04 × 101 | 7.13 × 101 | 4.10 × 102 | 7.28 × 100 | 1.52 × 102 | 8.70 × 103 | 1.02 × 101 | 4.12 × 101 | 4.23 × 10−1 | 2.67 × 101 |
ADDinh | 2.63 × 10−2 | 5.78 × 10−3 | 5.13 × 10−3 | 2.95 × 10−2 | 5.24 × 10−4 | 1.09 × 10−2 | 6.26 × 10−1 | 7.33 × 10−4 | 2.97 × 10−3 | 3.04 × 10−5 | 1.92 × 10−3 |
ADDderm | 7.30 × 100 | 1.60 × 100 | 1.42 × 100 | 8.19 × 100 | 1.45 × 10−1 | 3.03 × 100 | 1.74 × 102 | 2.03 × 10−1 | 8.23 × 10−1 | 8.43 × 10−3 | 5.33 × 10−1 |
Children | |||||||||||
ADDing | 8.54 × 102 | 1.88 × 102 | 1.66 × 102 | 9.58 × 102 | 1.70 × 101 | 3.55 × 102 | 2.03 × 104 | 2.38 × 101 | 9.62 × 101 | 9.86 × 10−1 | 6.24 × 101 |
ADDinh | 4.67 × 10−2 | 1.03 × 10−2 | 9.10 × 10−3 | 5.24 × 10−2 | 9.29 × 10−4 | 1.94 × 10−2 | 1.11 × 100 | 1.30 × 10−3 | 5.26 × 10−3 | 5.39 × 10−5 | 3.41 × 10−3 |
ADDderm | 4.78 × 100 | 1.05 × 100 | 9.32 × 10−1 | 5.36 × 100 | 9.51 × 10−2 | 1.99 × 100 | 1.14 × 102 | 1.33 × 10−1 | 5.39 × 10−1 | 5.52 × 10−3 | 3.49 × 10−1 |
ECR | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
As adults | 1.07 × 10−3 | 1.26 × 10−3 | 3.2 × 10−3 | 2.04 × 10−4 | 8.57 × 10−4 | 3.46 × 10−1 |
As children | 1.21 × 10−1 | 1.97 × 10−2 | 5.14 × 10−2 | 3.83 × 10−3 | 4.42 × 10−2 | 3.25 × 10−2 |
Ni adults | 2.75 × 10−3 | 4.48 × 10−4 | 1.17 × 10−3 | 8.69 × 10−5 | 1 × 10−3 | 7.38 × 10−4 |
Ni children | 7.33 × 10−3 | 1.19 × 10−3 | 3.11 × 10−3 | 2.32 × 10−4 | 2.67 × 10−3 | 1.97 × 10−3 |
Co adults | 1.05 × 10−2 | 3.72 × 10−3 | 5.05 × 10−3 | 1.29 × 10−3 | 4.04 × 10−3 | 6.05 × 10−3 |
Co children | 2.81 × 10−2 | 9.92 × 10−3 | 1.35 × 10−2 | 3.43 × 10−3 | 1.08 × 10−2 | 1.61 × 10−2 |
Cr adults | 1.92 × 10−1 | 3.99 × 10−2 | 1.49 × 10−1 | 8.95 × 10−3 | 4.62 × 10−1 | 7.8 × 10−2 |
Cr children | 5.13 × 10−1 | 1.06 × 10−1 | 3.99 × 10−1 | 2.39 × 10−2 | 1.23 × 100 | 2.08 × 10−1 |
Pb adults | 1.93 × 10−5 | 4.38 × 10−5 | 4 × 10−5 | 5.62 × 10−6 | 3.78 × 10−5 | 2.04 × 10−3 |
Pb children | 5.14 × 10−5 | 1.17 × 10−4 | 1.09 × 10−4 | 1.5 × 10−5 | 1.01 × 10−4 | 5.43 × 10−3 |
Cd adults | 1.95 × 10−5 | 4.26 × 10−5 | 1.14 × 10−4 | 8.88 × 10−6 | 3.2 × 10−5 | 2.28 × 10−3 |
Cd children | 5.21 × 10−5 | 1.14 × 10−4 | 3.03 × 10−4 | 2.37 × 10−5 | 8.52 × 10−5 | 6.09 × 10−3 |
PI | 1 | 2 | 3 | 4 | 5 | 6 | Average Upper Silesia | Average Lower Silesia |
---|---|---|---|---|---|---|---|---|
PI Al | 0.01 | 0.08 | 0.14 | 0.18 | 3.17 | 0.21 | 1.19 | 0.08 |
PI Mg | 0.47 | 0.43 | 0.47 | 2.41 | 6.19 | 3.34 | 3.98 | 0.46 |
PI Mn | 0.57 | 0.44 | 0.47 | 0.13 | 1.94 | 1.46 | 1.18 | 0.49 |
PI Cr | 4.64 | 0.96 | 3.61 | 0.22 | 11.14 | 1.88 | 4.41 | 3.07 |
PI Zn | 2.17 | 5.43 | 2.92 | 76.39 | 135.42 | 69.64 | 93.82 | 3.51 |
PI Ni | 5.77 | 0.94 | 2.45 | 0.18 | 2.1 | 1.55 | 1.28 | 3.05 |
PI Cu | 2.69 | 2.85 | 4.98 | 0.45 | 3.3 | 10.91 | 4.9 | 3.50 |
PI Co | 1.02 | 0.36 | 0.49 | 0.13 | 0.39 | 0.59 | 0.37 | 0.63 |
PI Pb | 0.96 | 2.18 | 2.03 | 0.28 | 1.88 | 101.22 | 34.46 | 1.72 |
PI V | 0.41 | 0.36 | 0.3 | 0.12 | 0.43 | 0.54 | 0.36 | 0.36 |
PI As | 1.26 | 1.48 | 3.77 | 0.24 | 1.01 | 407.58 | 136.28 | 2.17 |
PI Cd | 1.08 | 2.35 | 6.27 | 0.49 | 1.76 | 126.08 | 42.75 | 3.24 |
PLI | 0.91 | 0.88 | 1.32 | 0.43 | 2.79 | 6.29 | 5.2 | 1.15 |
Site | Mn | Ni | Cu | Zn | As | Cr | Mg | Co | Pb | Cd | V |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 42.18 | 431.42 | 201.18 | 162.26 | 94.27 | 347.45 | 35.5 | 76.63 | 71.7 | 80.7 | 30.72 |
2 | 5.29 | 11.37 | 34.48 | 65.81 | 17.92 | 11.65 | 5.23 | 4.37 | 26.35 | 28.50 | 4.36 |
3 | 3.47 | 18.02 | 36.69 | 33.65 | 27.78 | 26.59 | 3.43 | 3.61 | 14.99 | 46.24 | 2.25 |
4 | 0.74 | 1.01 | 2.51 | 422.52 | 1.33 | 1.19 | 13.31 | 0.69 | 1.55 | 2.71 | 0.66 |
5 | 0.61 | 0.66 | 1.04 | 42.76 | 0.32 | 3.52 | 1.95 | 0.12 | 0.59 | 0.56 | 0.14 |
6 | 6.86 | 7.24 | 51.10 | 326.05 | 1908.28 | 8.82 | 15.64 | 2.75 | 473.92 | 590.30 | 2.53 |
Igeo | 1 | 2 | 3 | 4 | 5 | 6 | Average Upper Silesia | Average Lower Silesia |
Al | −6.81 | −4.2 | −3.46 | −3.05 | 1.07 | −2.81 | −0.33 | −2.08 |
Mg | −1.66 | −1.8 | −1.68 | 0.68 | 2.04 | 1.15 | 1.4 | −1.41 |
Mn | −1.39 | −1.78 | −1.67 | −3.48 | 0.37 | −0.03 | −0.34 | −1.62 |
Cr | 1.63 | −0.64 | 1.22 | −2.78 | 2.89 | 0.32 | 1.55 | −4.82 |
Zn | 0.53 | 1.85 | 0.95 | 5.67 | 6.49 | 5.54 | 5.96 | 0.66 |
Ni | 1.94 | −0.67 | 0.7 | −3.04 | 0.48 | 0.04 | −0.23 | 0.75 |
Cu | 0.84 | 0.92 | 1.73 | 1.72 | 1.14 | 2.86 | 1.7 | 0.35 |
Co | −0.55 | −2.05 | −1.61 | −3.58 | −1.93 | −1.35 | −2.02 | 0.11 |
Pb | −0.64 | 0.53 | 0.43 | −2.42 | 0.32 | 6.07 | 4.52 | 1.17 |
V | −1.86 | −2.05 | −2.3 | −3.65 | −1.81 | −1.47 | −2.04 | 0.75 |
As | −0.25 | −0.02 | 1.33 | −2.64 | −0.57 | 8.08 | 6.5 | −1.72 |
Cd | −0.47 | 0.65 | 2.06 | −1.61 | 0.23 | 6.4 | 4.83 | 1.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rybak, J.; Wróbel, M.; Pieśniewska, A.; Rogula-Kozłowska, W.; Majewski, G. Possible Health Effects of Road Dust in Winter: Studies in Poland. Appl. Sci. 2023, 13, 7444. https://doi.org/10.3390/app13137444
Rybak J, Wróbel M, Pieśniewska A, Rogula-Kozłowska W, Majewski G. Possible Health Effects of Road Dust in Winter: Studies in Poland. Applied Sciences. 2023; 13(13):7444. https://doi.org/10.3390/app13137444
Chicago/Turabian StyleRybak, Justyna, Magdalena Wróbel, Angelika Pieśniewska, Wioletta Rogula-Kozłowska, and Grzegorz Majewski. 2023. "Possible Health Effects of Road Dust in Winter: Studies in Poland" Applied Sciences 13, no. 13: 7444. https://doi.org/10.3390/app13137444
APA StyleRybak, J., Wróbel, M., Pieśniewska, A., Rogula-Kozłowska, W., & Majewski, G. (2023). Possible Health Effects of Road Dust in Winter: Studies in Poland. Applied Sciences, 13(13), 7444. https://doi.org/10.3390/app13137444