Design of a Novel Ultra-Wideband Common-Mode Filter Using a Magnified Coupled Defected Ground Structure
Abstract
:1. Introduction
2. Methods
2.1. Full-Wave Simulation
2.2. Circuit Simulation
3. Results
3.1. Frequency-Domain Performance
3.2. Time-Domain Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, D.-B.; Wang, M.-H.; Huang, Y.-L. Smooth Bend Structures Using Hybrid Compensation for Common-Mode Noise Reduction. Appl. Sci. 2022, 12, 6479. [Google Scholar] [CrossRef]
- Fornberg, P.E.; Kanda, M.; Lasek, C.; Piket-May, M.; Hall, S.H. The impact of a nonideal return path on differential signal integrity. IEEE Trans. Electromagn. Compat. 2002, 44, 11–15. [Google Scholar] [CrossRef]
- Gavenda, J.D. Measured effectiveness of a toroid choke in reducing common-mode current. In Proceedings of the National Symposium on Electromagnetic Compatibility, Denver, CO, USA, 23–25 May 1989; pp. 208–210. [Google Scholar]
- Tseng, B.C.; Wu, L.K. Design of Miniaturized Common-Mode Filter by Multilayer Low-Temperature Co-Fired Ceramic. IEEE Trans. Electromagn. Compat. 2004, 46, 571–579. [Google Scholar] [CrossRef]
- Wu, C.-H.; Wang, C.-H.; Chen, C.H. Stopband-Extended Balanced Bandpass Filter Using Coupled Stepped-Impedance Resonators. IEEE Microw. Wirel. Compon. Lett. 2007, 17, 507–509. [Google Scholar] [CrossRef]
- Jin, S.; Quan, X. Novel Balanced Dual-Band Bandpass Filter Using Coupled Stepped-Impedance Resonators. IEEE Microw. Wirel. Compon. Lett. 2010, 20, 19–21. [Google Scholar] [CrossRef]
- Wang, X.-H.; Xue, Q.; Choi, W.-W. A Novel Ultra-Wideband Differential Filter Based on Double-Sided Parallel-Strip Line. IEEE Microw. Wirel. Compon. Lett. 2010, 20, 471–473. [Google Scholar] [CrossRef]
- Lin, W.-J.; Houng, M.-P.; Lin, D.-B.; Tang, I.-T. Investigation in open circuited metal lines embedded in defected ground structure and its applications to UWB filters. In Proceedings of the 2010 IEEE 11th Annual Wireless and Microwave Technology Conference (WAMICON), Melbourne, FL, USA, 26 January 2010; pp. 1–4. [Google Scholar]
- Feng, W.; Che, W. Novel Wideband Differential Bandpass Filters Based on T-Shaped Structure. IEEE Trans. Microw. Theory Tech. 2012, 60, 1560–1568. [Google Scholar] [CrossRef]
- Liu, W.-T.; Tsai, C.-H.; Han, T.-W.; Wu, T.-L. An Embedded Common-Mode Suppression Filter for GHz Differential Signals Using Periodic Defected Ground Plane. IEEE Microw. Wirel. Compon. Lett. 2008, 18, 248–250. [Google Scholar] [CrossRef]
- Lin, D.-B.; Chen, Y.-X.; Lee, Y.-H.; Zheng, L.-Z. Transmission line model for designing common-mode suppression filter on multi differential signal pairs. In Proceedings of the 2017 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), Seoul, Republic of Korea, 20 June 2017; pp. 201–203. [Google Scholar]
- Pang, Y.; Feng, Z. A compact common-mode filter for GHz differential signals using defected ground structure and shorted microstrip stubs. In Proceedings of the 2012 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Shenzhen, China, 5–8 May 2012; pp. 1–4. [Google Scholar]
- Gao, X.-K.; Lee, H.M.; Gao, S.; Liu, E.-X.; Png, C.E. A compact common-mode noise suppression filter for high speed differential signals using defected ground structure. In Proceedings of the 2015 Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), Taipei, Taiwan, 26–29 May 2015; pp. 685–688. [Google Scholar]
- Lin, D.-B.; Zhong, G.-J.; Chen, Y.-X. Wideband common-mode suppression filter design for multi differential signal pairs. In Proceedings of the 2015 Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), Taipei, Taiwan, 26–29 May 2015; pp. 53–55. [Google Scholar]
- Zeng, Z.; Chen, S.J.; Fumeaux, C. A Reconfigurable Filter Using Defected Ground Structure for Wideband Common-Mode Suppression. IEEE Access 2019, 7, 36980–36990. [Google Scholar] [CrossRef]
- Wu, S.-J.; Tsai, C.-H.; Wu, T.-L.; Itoh, T. A Novel Wideband Common-Mode Suppression Filter for Gigahertz Differential Signals Using Coupled Patterned Ground Structure. IEEE Trans. Microw. Theory Tech. 2009, 57, 848–855. [Google Scholar] [CrossRef]
- Zeng, Z.; Yao, Y.; Zhuang, Y. A Wideband Common-Mode Suppression Filter with Compact-Defected Ground Structure Pattern. IEEE Trans. Electromagn. Compat. 2015, 57, 1277–1280. [Google Scholar] [CrossRef]
- Fernández-Prieto, A.; Santos, V.d.; Martel, J.; Río, J.L.M.d.; Mesa, F.; Quevedo-Teruel, O.; Boix, R.R.; Medina, F. Glide Symmetry Applied to the Design of Common-Mode Rejection Filters Based on Complementary Split-Ring Resonators. IEEE Trans. Circuits Syst. II Express Briefs 2023, 70, 1911–1915. [Google Scholar] [CrossRef]
- Zeng, Z.; Bai, L. A Compact Bandwidth and Frequency-Range Reconfigurable CM Filter Using Varactor-Loaded Dual-Slot-Based Defected Ground Structure. IEEE Trans. Electromagn. Compat. 2023, 10, 5639. [Google Scholar] [CrossRef]
- Lin, D.-B.; Lee, Y.-H. A wideband common-mode suppression filter using enhanced coupled defected ground structure. In Proceedings of the 2016 IEEE International Symposium on Electromagnetic Compatibility (EMC), Ottawa, ON, Canada, 25–29 July 2016; pp. 791–796. [Google Scholar]
- Ahn, D.; Park, J.-S.; Kim, C.-S.; Kim, J.; Qian, Y.; Itoh, T. A design of the low-pass filter using the novel microstrip defected ground structure. IEEE Trans. Microw. Theory Tech. 2001, 49, 86–93. [Google Scholar] [CrossRef]
- Hong, J.-S. Microstrip Filters for RF/Microwave Applications, 2nd ed.; Wiley: New York, NY, USA, 2011. [Google Scholar]
- Hammerstad, E.O. Equations for Microstrip Circuit Design. In Proceedings of the 1975 5th European Microwave Conference, Hamburg, Germany, 1–4 September 1975; pp. 268–272. [Google Scholar]
Ref. | fL (GHz) | fH (GHz) | fC (GHz) | FBW (%) |
---|---|---|---|---|
[12] | 3.68 | 8.43 | 6.1 | 78.4 |
[13] | 5.4 | 11.4 | 8.4 | 71.4 |
[14] | 3.75 | 6.95 | 5.35 | 59.8 |
[15] | 1.8 | 2.9 | 2.35 | 46.8 |
2.9 | 8.1 | 5.5 | 94.5 | |
[16] | 3.6 | 9.1 | 6.35 | 86.6 |
[17] | 3.2 | 12.4 | 7.8 | 117.9 |
Parameters | Value | Parameters | Value | Parameters | Value | Parameters | Value | Parameters | Value |
---|---|---|---|---|---|---|---|---|---|
W | 0.18 | S | 0.36 | t | 0.035 | h1 | 0.1 | h2 | 0.865 |
Wt | 5.2 | Ws | 2.5 | Wb | 0.2 | Lt | 5.04 | Wg1 | 0.2 |
Wb1 | 2.4 | Wb2 | 4.6 | Lb1 | 0.56 | Lb2 | 0.4 | Wg2 | 0.3 |
Left DGS | fCL | 2.72 | f0L | 7.3 | ||||
Right DGS | fCR1 | 2.60 | fCR2 | 9.0 | f0R1 | 6.6 | f0R2 | 13.7 |
The proposedfilter | f01 | 3.20 | f02 | 10.3 | f03 | 14.2 |
Zeven | 49.46 Ω | CL1 | 0.095 pF | LL1 | 4.98 nH | ||
CR1 | 0.114 pF | LR1 | 5.12 nH | CR2 | 0.136 pF | LR2 | 0.99 nH |
fp1 | 4.9 GHz | fp2 | 7.7 GHz | fp3 | 13.1 GHz | ||
f0R1 | 6.6 GHz | f0L | 7.3 GHz | f0R2 | 13.7 GHz | ||
kx1 | 0.413534 | ke1 | 0.202218 | km1 | 0.211316 | ||
kx2 | 0.612251 | ke2 | 0.261125 | km2 | 0.351126 |
Eye Height | Eye Width | Timing Jitter | |
---|---|---|---|
Reference Board | 807.8 mV | 117.4 ps | 3.125 ps |
Filter Board | 762.3 mV | 116.8 ps | 2.344 ps |
[17] | [18] | [19] | [20] | This Work | |
---|---|---|---|---|---|
Physical size (mm × mm) | 10 × 10 | — | 9.2 × 19 | 7 × 7 | 5.04 × 5.2 |
Electrical size (λg × λg) | — | — | 0.22 × 0.46 | 0.305 × 0.305 | 0.292 × 0.301 |
Area | 100 mm2/ — | —/ — | 174.8 mm2/ 0.1012 λg2 | 49 mm2/ 0.0929 λg2 | 26.21 mm2/ 0.0881 λg2 |
Scc21 < −10 dB (GHz) | 3–13 | 2.4–3.15 | 1.9–7.3 | 3.7–10.8 | 2.9–16.2 |
FBW | 125% | Max. 26.8% | Max. 75.5% | 98% | 139.3% |
[20] | This Work | |
---|---|---|
Reference Board | 170 mV | 138 mV |
Filter Board | 98.6 mV | 52 mV |
Suppression Ratio | 42% | 62.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, D.-B.; Wang, M.-H.; Pramudita, A.A.; Adiprabowo, T. Design of a Novel Ultra-Wideband Common-Mode Filter Using a Magnified Coupled Defected Ground Structure. Appl. Sci. 2023, 13, 7404. https://doi.org/10.3390/app13137404
Lin D-B, Wang M-H, Pramudita AA, Adiprabowo T. Design of a Novel Ultra-Wideband Common-Mode Filter Using a Magnified Coupled Defected Ground Structure. Applied Sciences. 2023; 13(13):7404. https://doi.org/10.3390/app13137404
Chicago/Turabian StyleLin, Ding-Bing, Mei-Hui Wang, Aloysius Adya Pramudita, and Tjahjo Adiprabowo. 2023. "Design of a Novel Ultra-Wideband Common-Mode Filter Using a Magnified Coupled Defected Ground Structure" Applied Sciences 13, no. 13: 7404. https://doi.org/10.3390/app13137404
APA StyleLin, D.-B., Wang, M.-H., Pramudita, A. A., & Adiprabowo, T. (2023). Design of a Novel Ultra-Wideband Common-Mode Filter Using a Magnified Coupled Defected Ground Structure. Applied Sciences, 13(13), 7404. https://doi.org/10.3390/app13137404