Pilot Study on the Influence of Incentive Spirometry on Percutaneous Image-Guided Intra-Abdominal Drainage Catheter Pressure: A Potential Method to Enhance Drainage
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baker, T.A.; Aaron, J.M.; Borge, M.; Pierce, K.; Shoup, M.; Aranha, G.V. Role of interventional radiology in the management of complications after pancreaticoduodenectomy. Am. J. Surg. 2008, 195, 386–390. [Google Scholar] [CrossRef]
- Sohn, T.A.; Yeo, C.J.; Cameron, J.L.; Geschwind, J.F.; Mitchell, S.E.; Venbrux, A.C.; Lillemoe, K.D. Pancreaticoduodenectomy: Role of interventional radiologists in managing patients and complications. J. Gastrointest. Surg. 2003, 7, 209–219. [Google Scholar] [CrossRef]
- Ng, S.; Tan, K.; Anil, G. The role of interventional radiology in complications associated with liver transplantation. Clin. Radiol. 2015, 70, 1323–1335. [Google Scholar] [CrossRef]
- Wittich, G.R.; Goodacre, B.W.; Casola, G.; D’Agostino, H.B. Percutaneous abscess drainage: Update. World J. Surg. 2001, 25, 362. [Google Scholar]
- Bassetti, M.; Eckmann, C.; Giacobbe, D.R.; Sartelli, M.; Montravers, P. Post-operative abdominal infections: Epidemiology, operational definitions, and outcomes. Intensive Care Med. 2020, 46, 163–172. [Google Scholar] [CrossRef]
- Zhang, Y.; Stringel, G.; Bezahler, I.; Maddineni, S. Nonoperative management of periappendiceal abscess in children: A comparison of antibiotics alone versus antibiotics plus percutaneous drainage. J. Pediatr. Surg. 2020, 55, 414–417. [Google Scholar] [CrossRef]
- Leanza, V.; Presti, L.; Di Guardo, F.; Leanza, G.; Palumbo, M. CT-guided drainage with percutaneous approach as treatment of E. Faecalis post caesarean section severe abscess: Case report and literature review. G Chir. 2019, 40, 368–372. [Google Scholar] [PubMed]
- Gao, D.; Medina, M.G.; Alameer, E.; Nitz, J.; Tsoraides, S. A case report on delayed diagnosis of perforated Crohn’s disease with recurrent intra-psoas abscess requiring omental patch. Int. J. Surg. Case Rep. 2019, 65, 325–328. [Google Scholar] [CrossRef] [PubMed]
- EÁ, D.C.; Salazar, L.; JI, M. A giant liver abscess due to Fasciola hepatica infection. Rev. Esp. Enferm. Dig. 2019, 111, 815–816. [Google Scholar]
- Shafa, J.; Kee, S.T. Learning Interventional Radiology eBook; Elsevier Health Sciences: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Levin, D.C.; Eschelman, D.; Parker, L.; Rao, V.M. Trends in use of percutaneous versus open surgical drainage of abdominal abscesses. J. Am. Coll. Radiol. 2015, 12, 1247–1250. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, J.; Thomas, J.L. Complications of percutaneous fluid drainage. In Seminars in Interventional Radiology; Thieme Medical Publishers, Inc.: New York, NY, USA, 2006; Volume 23, pp. 194–204. [Google Scholar]
- Brolin, R.; Nosher, J.; Leiman, S.; Lee, W.; Greco, R. Percutaneous catheter versus open surgical drainage in the treatment of abdominal abscesses. Am. Surgeon. 1984, 50, 102–108. [Google Scholar]
- Ballard, D.; Alexander, J.; Weisman, J.; Orchard, M.; Williams, J.; D’Agostino, H. Number and location of drainage catheter side holes: In vitro evaluation. Clin. Radiol. 2015, 70, 974–980. [Google Scholar] [CrossRef]
- Patel, A.; Davis, C.; Davis, T. Percutaneous catheter drainage of secondary abdominal compartment syndrome: A case report. Radiol. Case Rep. 2021, 16, 670–672. [Google Scholar] [CrossRef]
- De Cleva, R.; de Assumpção, M.S.; Sasaya, F.; Chaves, N.Z.; Santo, M.A.; Fló, C.; Lunardi, A.C. Correlation between intra-abdominal pressure and pulmonary volumes after superior and inferior abdominal surgery. Clinics 2014, 69, 483–486. [Google Scholar] [CrossRef]
- Toor, H.; Kashyap, S.; Yau, A.; Simoni, M.; Farr, S.; Savla, P.; Kounang, R.; Miulli, D.E.; Yau, A.C.L. Efficacy of Incentive Spirometer in Increasing Maximum Inspiratory Volume in an Out-Patient Setting. Cureus 2021, 13, e18483. [Google Scholar] [CrossRef]
- Park, J.; Kraus, F.; Haaga, J. Fluid flow during percutaneous drainage procedures: An in vitro study of the effects of fluid viscosity, catheter size, and adjunctive urokinase. AJR Am. J. Roentgenol. 1993, 160, 165–169. [Google Scholar] [CrossRef]
- Ferguson, M.K. Preoperative assessment of pulmonary risk. Chest 1999, 115, 58S–63S. [Google Scholar] [CrossRef] [PubMed]
- Chetta, A.; Tzani, P.; Marangio, E.; Carbognani, P.; Bobbio, A.; Olivieri, D. Respiratory effects of surgery and pulmonary function testing in the preoperative evaluation. Acta Biomed. Ateneo Parm. 2006, 77, 69. [Google Scholar]
- Siafakas, N.; Mitrouska, I.; Bouros, D.; Georgopoulos, D. Surgery and the respiratory muscles. Thorax 1999, 54, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Vassilakopoulos, T.; Mastora, Z.; Katsaounou, P.; Doukas, G.; Klimopoulos, S.; Roussos, C.; Zakynthinos, S. Contribution of pain to inspiratory muscle dysfunction after upper abdominal surgery: A randomized controlled trial. Am. J. Respir. Crit. Care Med. 2000, 161, 1372–1375. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, V.A.; Cornell, J.E.; Smetana, G.W. Strategies to reduce postoperative pulmonary complications after noncardiothoracic surgery: Systematic review for the American College of Physicians. Ann. Intern. Med. 2006, 144, 596–608. [Google Scholar] [CrossRef]
- Pereira, E.D.B.; Fernandes, A.L.G.; Anção, M.d.S.; Peres, C.d.A.; Atallah, Á.N.; Faresin, S.M. Prospective assessment of the risk of postoperative pulmonary complications in patients submitted to upper abdominal surgery. Sao Paulo Med. J. 1999, 117, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Overend, T.J.; Anderson, C.M.; Lucy, S.D.; Bhatia, C.; Jonsson, B.I.; Timmermans, C. The effect of incentive spirometry on postoperative pulmonary complications: A systematic review. Chest 2001, 120, 971–978. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.A.; McIntosh, J.M. Are incentive spirometry, intermittent positive pressure breathing, and deep breathing exercises effective in the prevention of postoperative pulmonary complications after upper abdominal surgery? A systematic overview and meta-analysis. Phys. Ther. 1994, 74, 3–10. [Google Scholar] [CrossRef]
- Hallböök, T.; Lindblad, B.; Lindroth, B.; Wolff, T. Prophylaxis against pulmonary complications in patients undergoing gall-bladder surgery. A comparison between early mobilization, physiotherapy with and without bronchodilatation. Ann. Chir. Gynaecol. 1984, 73, 55–58. [Google Scholar] [PubMed]
- Pontoppidan, H. Mechanical Aids to Lung Expansion in Non-lntubated Surgical Patients. Am. Rev. Respir. Dis. 1980, 122, 109–119. [Google Scholar] [CrossRef]
- Van de Water, J.; Watring, W.; Linton, L.; Murphy, M.; Byron, R. Prevention of postoperative pulmonary complications. Surg. Gynecol. Obstet. 1972, 135, 229–233. [Google Scholar]
- Schuppisser, J.-P.; Brändli, O.; Meili, U. Postoperative intermittent positive pressure breathing versus physiotherapy. Am. J. Surg. 1980, 140, 682–686. [Google Scholar] [CrossRef]
- Kotta, P.A.; Ali, J.M. Incentive Spirometry for Prevention of Postoperative Pulmonary Complications After Thoracic Surgery. Respir. Care 2021, 66, 327–333. [Google Scholar] [CrossRef]
- Takimoto, R.; Kimura, M.; Yokoba, M.; Ichikawa, T.; Matsunaga, A. Relationship between abdominal pressure and diaphragmatic movement in abdominal breathing. Eur. Respir. Soc. 2016, 48, PA1372. [Google Scholar]
- Hodges, P.W.; Gandevia, S.C. Changes in intra-abdominal pressure during postural and respiratory activation of the human diaphragm. J. Appl. Physiol. 2000, 89, 967–976. [Google Scholar] [CrossRef]
- Grillner, S.; Nilsson, J.; Thorstensson, A. Intra-abdominal pressure changes during natural movements in man. Acta Physiol. Scand. 1978, 103, 275–283. [Google Scholar] [CrossRef]
- Cheatham, M.L.; Malbrain, M.L.; Kirkpatrick, A.; Sugrue, M.; Parr, M.; De Waele, J.; Balogh, Z.; Leppäniemi, A.; Olvera, C.; Ivatury, R.; et al. Results from the international conference of experts on intra-abdominal hypertension and abdominal compartment syndrome. II. Recommendations. Intensive Care Med. 2007, 33, 951–962. [Google Scholar] [CrossRef] [PubMed]
- Bailey, J.; Shapiro, M.J. Abdominal compartment syndrome. Crit. Care 2000, 4, 23. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Coleman, T.J.; Hamad, N.M.; Shaw, J.M.; Egger, M.J.; Hsu, Y.; Hitchcock, R.; Jin, H.; Choi, C.K.; Nygaard, I.E. Effects of walking speeds and carrying techniques on intra-abdominal pressure in women. Int. Urogynecol. J. 2015, 26, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Hoyt, A.C.; D’Agostino, H.B.; Carrillo, A.J.; Vasconcellos-Viera, M.; Kim, S.; O’Laoide, R. Drainage efficiency of double-lumen sump catheters and single-lumen catheters: An in vitro comparison. J. Vasc. Interv. Radiol. 1997, 8, 267–270. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Madambath, J.G.; Somani, P.; Pathak, A.; Rameshbabu, C.S.; Bansal, R.; Ramasamy, K.; Patil, A. Endoscopic ultrasound of peritoneal spaces. Endosc. Ultrasound. 2017, 6, 90–102. [Google Scholar] [CrossRef] [PubMed]
Intra-Abdominal Pressure Increases by Region | |||
---|---|---|---|
Standardized Pull (1500 cc) | Max Pull (Average 1999 cc) | ||
Upper Abdomen | Upper Abdomen | ||
Mean ± STD | 61.6 ± 54.2 | Mean ± STD | 82.5 ± 54.8 |
Median | 54.4 | Median | 54.4 |
Min-Max | 18.1–154 | Min-Max | 27.2–154 |
Lower Abdomen | Lower Abdomen | ||
Mean ± STD | 42.3 ± 18.9 | Mean ± STD | 39.3 ± 13.8 |
Median | 36.2 | Median | 36.2 |
Min-Max | 27.2–63.4 | Min-Max | 27.2–54.4 |
Pelvis | Pelvis | ||
Mean ± STD | 48.7 ± 35.9 | Mean ± STD | 54.4 ± 35.3 |
Median | 40.8 | Median | 43.1 |
Min-Max | 27.2–136 | Min-Max | 22.7–136 |
Abscess | Ascites | Biloma | Cyst | Hematoma | |
---|---|---|---|---|---|
Mean (SD) | 52.7 ± 36.3 | 40.8 | 95.2 ± 83.3 | 71.4 ± 37.1 | 27.2 |
Median | 43.1 | NA | 95.2 | 54.4 | NA |
Min-Max | 22.7–136 | NA | 36.2–154 | 49.8–127 | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganapathy, A.; Ballard, D.H.; Bishop, G.L.; Hoegger, M.J.; Abraham, N.; D’Agostino, H.B. Pilot Study on the Influence of Incentive Spirometry on Percutaneous Image-Guided Intra-Abdominal Drainage Catheter Pressure: A Potential Method to Enhance Drainage. Appl. Sci. 2023, 13, 7308. https://doi.org/10.3390/app13127308
Ganapathy A, Ballard DH, Bishop GL, Hoegger MJ, Abraham N, D’Agostino HB. Pilot Study on the Influence of Incentive Spirometry on Percutaneous Image-Guided Intra-Abdominal Drainage Catheter Pressure: A Potential Method to Enhance Drainage. Applied Sciences. 2023; 13(12):7308. https://doi.org/10.3390/app13127308
Chicago/Turabian StyleGanapathy, Aravinda, David H. Ballard, Grace L. Bishop, Mark J. Hoegger, Nihil Abraham, and Horacio B. D’Agostino. 2023. "Pilot Study on the Influence of Incentive Spirometry on Percutaneous Image-Guided Intra-Abdominal Drainage Catheter Pressure: A Potential Method to Enhance Drainage" Applied Sciences 13, no. 12: 7308. https://doi.org/10.3390/app13127308
APA StyleGanapathy, A., Ballard, D. H., Bishop, G. L., Hoegger, M. J., Abraham, N., & D’Agostino, H. B. (2023). Pilot Study on the Influence of Incentive Spirometry on Percutaneous Image-Guided Intra-Abdominal Drainage Catheter Pressure: A Potential Method to Enhance Drainage. Applied Sciences, 13(12), 7308. https://doi.org/10.3390/app13127308