Non-Probabilistic Reliability Analysis of Slopes Based on Fuzzy Set Theory
Abstract
:1. Introduction
2. Fuzzy Characterization Method for Geotechnical Parameters
2.1. Fuzzy Affiliation Function
2.2. Fuzzy Sets and Fuzzy Cut set Theory
3. Non-Probabilistic Reliability Analysis Method Based on the Ellipsoidal Model
3.1. Construction of the Ellipsoidal Model
3.2. Non-Probabilistic Reliability Analysis
4. Non-Probabilistic Reliability Analysis Method for Slopes Based on Fuzzy Set Theory
5. Example Analysis
5.1. Basic Information
5.2. Calculation Results and Analysis
5.2.1. Influences of Different Fuzzy Number Types and Shape Parameters on the Non-Probabilistic Reliability of the Slope
5.2.2. Influences of Different Allowable Safety Factors on the Non-Probabilistic Reliability of the Slope
5.2.3. The Relationship between Non-Probabilistic Reliability Indexes and Failure Degrees
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Uzhga-Rebrov, O.; Grabusts, P. Methodology for Environmental Risk Analysis Based on Intuitionistic Fuzzy Values. Risks 2023, 11, 88. [Google Scholar] [CrossRef]
- Mazarbhuiya, F.A.; Shenify, M. An Intuitionistic Fuzzy-Rough Set-Based Classification for Anomaly Detection. Appl. Sci. 2023, 13, 5578. [Google Scholar] [CrossRef]
- Ma, K.; Liu, G. Three-Dimensional Discontinuous Deformation Analysis of Failure Mechanisms and Movement Characteristics of Slope Rockfalls. Rock Mech. Rock Eng. 2022, 55, 275–296. [Google Scholar] [CrossRef]
- Chen, Z.; Lu, Z.; Ling, C.; Feng, K. Reliability analysis model of time-dependent multi-mode system under fuzzy uncertainty: Applied to undercarriage structures. Aerosp. Sci. Technol. 2022, 120, 107278. [Google Scholar] [CrossRef]
- Juang, C.H.; Jhi, Y.Y.; Lee, D.H. Stability analysis of existing slopes considering uncertainty. Eng. Geol. 1998, 49, 111–122. [Google Scholar] [CrossRef]
- Dodagoudar, G.R.; Venkatachalam, G. Reliability analysis of slopes using fuzzy sets theory. Comput. Geotech. 2000, 27, 101–115. [Google Scholar] [CrossRef]
- Giasi, C.I.; Masi, P.; Cherubini, C. Probabilistic and fuzzy reliability analysis of a sample slope near Aliano. Eng. Geol. 2003, 67, 391–402. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, Z.; Li, X.; Wang, C.; Yu, H. Fuzzy random reliability analysis of slope based on fuzzy point estimate method. Rock Soil Mech. 2012, 33, 1795–1800. (In Chinese) [Google Scholar]
- Zhang, Y.; Li, Y.; Li, S.; Jiang, Q. Study of boundaries of membership function values for slope fuzzy reliability analysis. Rock Soil Mech. 2014, 35, 1157–1163. (In Chinese) [Google Scholar]
- Tan, X.; Hu, X.; Wu, K. Fuzzy random finite element reliability analysis of slope stability with fuzzy basic veriables and fuzzy states. Chin. J. Rock Mech. Eng. 2009, 28, 3952–3958. (In Chinese) [Google Scholar]
- Khakestar, M.S.; Hassani, H.; Moarefvand, P.; Madani, H. Application of multi-criteria decision making methods in slope stability analysis of open pit mines. J. Geol. Soc. India 2016, 87, 213–221. [Google Scholar] [CrossRef]
- Zhang, C. Synthetic evaluation on the slope stability of muddy submarine channel based on the fuzzy comprehensive method. J. Saf. Environ. 2019, 19, 1892–1897. (In Chinese) [Google Scholar]
- Zhao, Z.; Lyu, H.; Kang, S. Risk assessment of high slope landslide in open-pit mine based on comprehensive geophysical prospecting. IOP Conf. Ser. Earth Environ. Sci. 2022, 983, 012082. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, M.; Zhang, P.; Li, X.; Yin, S. Dynamic Risk Assessment of High Slope in Open-Pit Coalmines Based on Interval Trapezoidal Fuzzy Soft Set Method: A Case Study. Processes 2022, 10, 2168. [Google Scholar] [CrossRef]
- Zhou, C.; Ouyang, J.; Liu, Z.; Zhang, L. Early Risk Warning of Highway Soft Rock Slope Group Using Fuzzy-Based Machine Learning. Sustainability 2022, 14, 3367. [Google Scholar] [CrossRef]
- Jiang, F.; Li, H.; Fu, J.; Hong, L. A RBF and active learning combined method for structural non-probabilistic reliability analysis. Acta Aeronaut. Astronaut. Sin. 2023, 44, 226667. (In Chinese) [Google Scholar]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Hong, L.; Li, H.; Fu, J.; Li, J.; Peng, K. Hybrid active learning method for non-probabilistic reliability analysis with multi-super-ellipsoidal model. Reliab. Eng. Syst. Saf. 2022, 222, 108414. [Google Scholar] [CrossRef]
- Li, K.; Liu, H. Structural Reliability Analysis by Using Non-Probabilistic Multi-Cluster Ellipsoidal Model. Entropy 2022, 24, 1209. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Qiang, X.; Fan, H.; Wu, T.; Chen, Y. Novel data-driven method for non-probabilistic uncertainty analysis of engineering structures based on ellipsoid model. Comput. Methods Appl. Mech. Eng. 2022, 394, 114889. [Google Scholar] [CrossRef]
- Tan, Z. A Study of Uncertainty Quantification and Reliability Analysis Method Based on Ellipsoid Model. Ph.D. Thesis, Zhejiang Sci-Tech University, Hangzhou, China, 2018. [Google Scholar]
- Kang, Z.; Luo, Y.; Li, A. On non-probabilistic reliability-based design optimization of structures with uncertain-but-bounded parameters. Struct. Saf. 2011, 33, 196–205. [Google Scholar] [CrossRef]
- Luo, Y.; Kang, Z.; Li, A. Study on structural non-probabilistic reliability index under convex models and its solution methods. Chin. J. Solid Mech. 2011, 32, 646–654. (In Chinese) [Google Scholar]
- Hasofer Abraham, M.; Lind Niels, C. Exact and Invariant Second-Moment Code Format. J. Eng. Mech. Div. 1974, 100, 111–121. [Google Scholar] [CrossRef]
- Rackwitz, R.; Flessler, B. Structural reliability under combined random load sequences. Comput. Struct. 1978, 9, 489–494. [Google Scholar] [CrossRef]
- Santosh, T.V.; Saraf, R.K.; Ghosh, A.K.; Kushwaha, H.S. Optimum step length selection rule in modified HL–RF method for structural reliability. Int. J. Press. Vessel. Pip. 2006, 83, 742–748. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, D. Rotation gradient algorithm for calculating structural reliability index. J. Dalian Univ. Technol. 2011, 51, 221–225. (In Chinese) [Google Scholar]
- Jiang, C.; Bi, R.G.; Lu, G.Y.; Han, X. Structural reliability analysis using non-probabilistic convex model. Comput. Methods Appl. Mech. Eng. 2013, 254, 83–98. [Google Scholar] [CrossRef]
- Bucher, C.G.; Bourgund, U. A fast and efficient response surface approach for structural reliability problems. Struct. Saf. 1990, 7, 57–66. [Google Scholar] [CrossRef]
- Guo, X.; Dias, D.; Carvajal, C.; Peyras, L.; Breul, P. Three-dimensional probabilistic stability analysis of an earth dam using an active learning metamodeling approach. Bull. Eng. Geol. Environ. 2021, 81, 40. [Google Scholar] [CrossRef]
- Guo, X.; Dias, D. Kriging based reliability and sensitivity analysis—Application to the stability of an earth dam. Comput. Geotech. 2020, 120, 103411. [Google Scholar] [CrossRef]
- Shu, S.; Gong, W. An improved fuzzy point estimate method for slope stability analysis based on neural network. Rock Soil Mech. 2015, 36, 2111–2116. (In Chinese) [Google Scholar]
- Cho, S.E. Probabilistic stability analyses of slopes using the ANN-based response surface. Comput. Geotech. 2009, 36, 787–797. [Google Scholar] [CrossRef]
- Zhang, Y.; Deng, J.; Li, Y.; Wang, G. Fuzzy reliability analysis of slopes considering characteristics of membership function. Chin. J. Geotech. Eng. 2018, 40, 1350. [Google Scholar]
- Tan, X. The stability analysis of slope by fuzzy probability method. J. Hefei Univ. Technol. Nat. Sci. 2001, 3, 442–446. (In Chinese) [Google Scholar]
- Santamarina, J.; Altschaeffl, A.; Chameau, J. Reliability of slopes: Incorporating qualitative information (abridgment). Transp. Res. Rec. 1992, 1343, 1–5. [Google Scholar]
Soil Layer Number | Cohesion, kPa | Internal Friction Angle, ° | ||
---|---|---|---|---|
Mean Value | Standard Deviation | Mean Value | Standard Deviation | |
1 | 38.31 | 7.66 | 0 | 0 |
2 | 23.94 | 4.79 | 12 | 1.2 |
λ | k = 2.0 | k = 2.5 | k = 3.0 | ||||||
---|---|---|---|---|---|---|---|---|---|
c1, kPa | c2, kPa | φ2, ° | c1, kPa | c2, kPa | φ2, ° | c1, kPa | c2, kPa | φ2, ° | |
0.00 | [22.99, 53.63] | [14.36, 33.52] | [9.60, 14.40] | [19.16, 57.46] | [11.97, 35.92] | [9.00, 15.00] | [15.33, 61.29] | [9.57, 38.31] | [8.40, 15.60] |
0.05 | [23.76, 52.86] | [14.84, 33.04] | [9.72, 14.28] | [20.12, 56.50] | [12.56, 35.32] | [9.15, 14.85] | [16.48, 60.14] | [10.29, 37.59] | [8.58, 15.42] |
0.10 | [24.52, 52.10] | [15.32, 32.56] | [9.84, 14.16] | [21.08, 55.55] | [13.16, 34.72] | [9.30, 14.70] | [17.63, 58.99] | [11.01, 36.87] | [8.76, 15.24] |
0.15 | [25.29, 51.33] | [15.80, 32.08] | [9.96, 14.04] | [22.03, 54.59] | [13.76, 34.12] | [9.45, 14.55] | [18.78, 57.84] | [11.73, 36.15] | [8.94, 15.06] |
0.20 | [26.05, 50.57] | [16.28, 31.60] | [10.08, 13.92] | [22.99, 53.63] | [14.36, 33.52] | [9.60, 14.40] | [19.93, 56.69] | [12.44, 35.44] | [9.12, 14.88] |
0.25 | [26.82, 49.80] | [16.76, 31.13] | [10.20, 13.80] | [23.95, 52.67] | [14.96, 32.92] | [9.75, 14.25] | [21.08, 55.55] | [13.16, 34.72] | [9.30, 14.70] |
0.30 | [27.59, 49.03] | [17.23, 30.65] | [10.32, 13.68] | [24.91, 51.72] | [15.56, 32.32] | [9.90, 14.10] | [22.22, 54.40] | [13.88, 34.00] | [9.48, 14.52] |
0.35 | [28.35, 48.27] | [17.71, 30.17] | [10.44, 13.56] | [25.86, 50.76] | [16.16, 31.72] | [10.05, 13.95] | [23.37, 53.25] | [14.60, 33.28] | [9.66, 14.34] |
0.40 | [29.12, 47.50] | [18.19, 29.69] | [10.56, 13.44] | [26.82, 49.80] | [16.76, 31.13] | [10.20, 13.80] | [24.52, 52.10] | [15.32, 32.56] | [9.84, 14.16] |
0.45 | [29.88, 46.74] | [18.67, 29.21] | [10.68, 13.32] | [27.78, 48.84] | [17.35, 30.53] | [10.35, 13.65] | [25.67, 50.95] | [16.04, 31.84] | [10.02, 13.98] |
0.50 | [30.65, 45.97] | [19.15, 28.73] | [10.80, 13.20] | [28.74, 47.89] | [17.95, 29.93] | [10.50, 13.50] | [26.82, 49.80] | [16.76, 31.13] | [10.20, 13.80] |
0.55 | [31.42, 45.20] | [19.63, 28.25] | [10.92, 13.08] | [29.69, 46.93] | [18.55, 29.33] | [10.65, 13.35] | [27.97, 48.65] | [17.47, 30.41] | [10.38, 13.62] |
0.60 | [32.18, 44.44] | [20.11, 27.77] | [11.04, 12.96] | [30.65, 45.97] | [19.15, 28.73] | [10.80, 13.20] | [29.12, 47.50] | [18.19, 29.69] | [10.56, 13.44] |
0.65 | [32.95, 43.67] | [20.59, 27.29] | [11.16, 12.84] | [31.61, 45.01] | [19.75, 28.13] | [10.95, 13.05] | [30.27, 46.35] | [18.91, 28.97] | [10.74, 13.26] |
0.70 | [33.71, 42.91] | [21.07, 26.81] | [11.28, 12.72] | [32.57, 44.06] | [20.35, 27.53] | [11.10, 12.90] | [31.42, 45.20] | [19.63, 28.25] | [10.92, 13.08] |
0.75 | [34.48, 42.14] | [21.55, 26.34] | [11.40, 12.60] | [33.52, 43.10] | [20.95, 26.93] | [11.25, 12.75] | [32.57, 44.06] | [20.35, 27.53] | [11.10, 12.90] |
0.80 | [35.25, 41.37] | [22.02, 25.86] | [11.52, 12.48] | [34.48, 42.14] | [21.55, 26.34] | [11.40, 12.60] | [33.71, 42.91] | [21.07, 26.81] | [11.28, 12.72] |
0.85 | [36.01, 40.61] | [22.50, 25.38] | [11.64, 12.36] | [35.44, 41.18] | [22.14, 25.74] | [11.55, 12.45] | [34.86, 41.76] | [21.78, 26.10] | [11.46, 12.54] |
0.90 | [36.78, 39.84] | [22.98, 24.90] | [11.76, 12.24] | [36.40, 40.23] | [22.74, 25.14] | [11.70, 12.30] | [36.01, 40.61] | [22.50, 25.38] | [11.64, 12.36] |
0.95 | [37.54, 39.08] | [23.46, 24.42] | [11.88, 12.12] | [37.35, 39.27] | [23.34, 24.54] | [11.85, 12.15] | [37.16, 39.46] | [23.22, 24.66] | [11.82, 12.18] |
Allowable Safety Factor | Shape Parameter | Fuzzy Number Type of Geotechnical Parameters | |||||||
---|---|---|---|---|---|---|---|---|---|
Triangular | Trapezoidal | Normal | Log-Normal | ||||||
Failure Degree | Failure Probability | Failure Degree | Failure Probability | Failure Degree | Failure Probability | Failure Degree | Failure Probability | ||
1.0 | 2.0 | 0.00238 | 0.00034 | 0.03576 | 0.07330 | 0.00167 | 0.00088 | 0.00061 | 0.00068 |
2.5 | 0.01071 | 0.00451 | 0.02990 | 0.05410 | 0.00425 | 0.00225 | 0.00191 | 0.00166 | |
3.0 | 0.02385 | 0.01854 | 0.03437 | 0.04476 | 0.00561 | 0.00311 | 0.00265 | 0.00224 | |
1.1 | 2.0 | 0.00661 | 0.00253 | 0.07782 | 0.12211 | 0.00541 | 0.00496 | 0.00280 | 0.00420 |
2.5 | 0.02003 | 0.01588 | 0.05582 | 0.09732 | 0.01005 | 0.00967 | 0.00557 | 0.00781 | |
3.0 | 0.03765 | 0.04411 | 0.05442 | 0.08431 | 0.01216 | 0.01218 | 0.00686 | 0.00967 | |
1.2 | 2.0 | 0.01654 | 0.01345 | 0.14011 | 0.19013 | 0.01570 | 0.02116 | 0.01038 | 0.01925 |
2.5 | 0.03701 | 0.04616 | 0.10304 | 0.16166 | 0.02346 | 0.03311 | 0.01566 | 0.02885 | |
3.0 | 0.06013 | 0.09260 | 0.08662 | 0.14561 | 0.02665 | 0.03866 | 0.01780 | 0.03319 |
Non-Probabilistic Reliability Indexes | Failure Degrees |
---|---|
0.449~0.499 | 0.2008~0.2371 |
0.500~0.599 | 0.1345~0.2008 |
0.600~0.699 | 0.0786~0.1345 |
0.700~0.799 | 0.0389~0.0786 |
0.800~0.899 | 0.0098~0.0389 |
0.900~0.999 | 0~0.0098 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shu, S.; Qian, J.; Gong, W.; Pi, K.; Yang, Z. Non-Probabilistic Reliability Analysis of Slopes Based on Fuzzy Set Theory. Appl. Sci. 2023, 13, 7024. https://doi.org/10.3390/app13127024
Shu S, Qian J, Gong W, Pi K, Yang Z. Non-Probabilistic Reliability Analysis of Slopes Based on Fuzzy Set Theory. Applied Sciences. 2023; 13(12):7024. https://doi.org/10.3390/app13127024
Chicago/Turabian StyleShu, Suxun, Jiajun Qian, Wenhui Gong, Kang Pi, and Zhiquan Yang. 2023. "Non-Probabilistic Reliability Analysis of Slopes Based on Fuzzy Set Theory" Applied Sciences 13, no. 12: 7024. https://doi.org/10.3390/app13127024
APA StyleShu, S., Qian, J., Gong, W., Pi, K., & Yang, Z. (2023). Non-Probabilistic Reliability Analysis of Slopes Based on Fuzzy Set Theory. Applied Sciences, 13(12), 7024. https://doi.org/10.3390/app13127024