A Decision Tree for Rockburst Conditions Prediction
Abstract
:1. Introduction
Reference | Number of Data | Input Variables | Algorithm | Results/Description |
---|---|---|---|---|
J. Zhou et al. [20] | 132 | D(m), σt, σc, σθ, σθ/σc, σc/σt, EEI | SVM | The results indicated that SVM was feasible for rockburst conditions by indicating an average accuracy of 80% |
Dong et al. [25] | 46 | σt, σc, σθ, EEI | RF, ANN and SVM | The results showed that the RF rockburst prediction model outperformed those of SVM and ANN, based on the misjudgment ratios |
Adoko et al. [26] | 174 | σt, σc, σθ, σθ/σc, σc/σt, EEI | FIS, ANFIS | The performance of ANFIS, based on the metrics adopted, was better in predicting rockburst conditions |
Liu et al. [27] | 164 | σθ/σc, σc/σt, EEI | cloud modelling, MLR, ANN | The cloud model adopted performed better than MLR, but has superior generalization ability of the ANN in rockburst prediction |
J. Zhou et al. [28] | 254 | PPV, SCF, GSSC, ES, GS | stochastic gradient-boosting (SGB) | The SGB showed an average accuracy of 0.61 and a kappa of 0.43, indicating a very good performance in predicting rockburst conditions |
K. Zhou et al. [29] | 209 | D(m), σt, σc, σθ, σθ/σc, σc/σt, EEI | cloud calculation and entropy weight, KNN, BN, RF | The results obtained from the considered model showed high performance of this model compared to the other ML algorithms |
J. Zhou et al. [30] | 246 | D(m), σt, σc, σθ, σθ/σc, σc/σt, EEI | ANN, SVM, RF, GBM, LDA, QDA, NB, KNN, CT, PLSDA | The accuracy and Cohen’s kappa revealed that GBM and RF performed better than the others in predicting rockburst conditions |
Li et al. [31] | 137 | D(m), σt, σc, σθ, EEI | BN with NB classifier | The result suggests that the error rate of the proposed BN is the lowest among traditional criteria, and it can resolve incomplete data |
Ribeiro e Sousa et al. [10] | TSUP, K, σc, Deq, ORIENT | BN classifiers | The results revealed high accuracy and good relationships between variables to be identified | |
Adoko and Zvarivada [32] | 174 | σt, σc, σθ, EEI | BN classifiers | Overall, the results indicate that BN performs well in predicting rockburst intensity |
Li and Jimenez [33] | 135 | D(m), σt, σc, σθ, EEI | Logistic Regression classifier (LRC) | The results, based on AUC and error rates, indicate that LRC is effective in predicting rockburst intensity |
Xu et al. [34] | 60 | σθ, σθ/σc, σc/σt, EEI | ideal-point method | The results revealed minimum error rate and a very high prediction for rockburst intensity |
Pu et al. [35] | 108 | σt, σc, σθ, EEI | Decision Tree (DT) | The results show that moderate rockburst intensity has the best agreement with the actual circumstances |
Faradonbeh and Taheri [36] | 134 | σt, σc, σθ, EEI | ENN, GEP, DT | The results showed the high accuracy and applicability of all three new models. However, the GA-ENN and the GEP methods outperformed the C4.5 method |
Afraei et al. [37] | 188 | D(m), σt, σc, σθ, σθ/σc, σc/σt, EEI | NB, DT, SVM, ANN, KNN | The developed models show a high performance compared to the previous application of the empirical criteria |
Pu et al. [38] | 246 | D(m), σt, σc, σθ, σθ/σc, σc/σt, EEI | Support Vector Classifier (SVC) | Promising results in forecasting the rockburst intensity at the Kimberlite mine in Canada were achieved |
Kadkhodaei and Ghasemi [39] | 174 | σθ/σc, σc/σt, EEI | DT | The results show the significantly high performance of the models |
J. Zhou et al. [21] | 196 | σt, σc, σθ, σθ/σc, σc/σt, EEI | FA, ANN, and (FA-ANN) | The results show a significantly high performance for all three models, based on RMSE and R2 |
J. Zhou et al. [24] | 102 | σt, σc, σθ, σθ/σc, σc/σt, EEI | CART, Boosting, and Bagging | The results, based on accuracy, indicated that the ensemble techniques proved better for the prediction, especially the bagging |
2. Data Characterization
- Rock type (Igneous—IG, Metamorphic—MT, and Sedimentary—SD)
- Depth (m)
- Brittle Index (BI)
- Stress Index (SI)
- Elastic Energy Index (EEI)
3. Methods
3.1. Modelling Approach
3.1.1. Decision Tree Approach
3.1.2. Multiple Algorithm Approach
3.2. Data Evaluation
4. Discussion
4.1. DT-RT
4.2. Unique-DT
4.3. Multiple ML Algorithms
RF | |||||||
---|---|---|---|---|---|---|---|
Rockburst Condition | Precision | Recall | F1 | AUC | ACC | SP | MCC |
None | 0.64 | 0.68 | 0.66 | 0.94 | 0.88 | 0.92 | 0.58 |
Light | 0.6 | 0.53 | 0.56 | 0.85 | 0.76 | 0.85 | 0.4 |
Moderate | 0.64 | 0.75 | 0.69 | 0.86 | 0.77 | 0.78 | 0.51 |
Strong | 0.79 | 0.65 | 0.71 | 0.93 | 0.9 | 0.96 | 0.66 |
Average | 0.67 | 0.65 | 0.66 | 0.9 | 0.83 | 0.88 | 0.54 |
KNN | |||||||
None | 0.53 | 0.62 | 0.58 | 0.75 | 0.84 | 0.88 | 0.48 |
Light | 0.52 | 0.44 | 0.47 | 0.63 | 0.71 | 0.83 | 0.28 |
Moderate | 0.58 | 0.63 | 0.61 | 0.7 | 0.72 | 0.77 | 0.4 |
Strong | 0.68 | 0.65 | 0.67 | 0.79 | 0.88 | 0.93 | 0.59 |
Average | 0.58 | 0.59 | 0.58 | 0.72 | 0.79 | 0.85 | 0.44 |
SVM | |||||||
None | 0.64 | 0.19 | 0.29 | 0.77 | 0.84 | 0.98 | 0.28 |
Light | 0.27 | 0.39 | 0.32 | 0.52 | 0.5 | 0.55 | -0.05 |
Moderate | 0.35 | 0.42 | 0.38 | 0.53 | 0.54 | 0.6 | 0.03 |
Strong | 0.88 | 0.53 | 0.66 | 0.87 | 0.9 | 0.98 | 0.63 |
Average | 0.54 | 0.38 | 0.41 | 0.67 | 0.7 | 0.78 | 0.22 |
ANN | |||||||
None | 0.74 | 0.62 | 0.68 | 0.88 | 0.9 | 0.95 | 0.62 |
Light | 0.48 | 0.5 | 0.49 | 0.71 | 0.7 | 0.78 | 0.27 |
Moderate | 0.51 | 0.52 | 0.51 | 0.72 | 0.61 | 0.67 | 0.19 |
Strong | 0.67 | 0.7 | 0.68 | 0.91 | 0.88 | 0.92 | 0.61 |
Average | 0.6 | 0.59 | 0.59 | 0.81 | 0.77 | 0.83 | 0.42 |
AdaboostM1 | |||||||
None | 0.72 | 0.7 | 0.71 | 0.92 | 0.9 | 0.94 | 0.65 |
Light | 0.58 | 0.52 | 0.55 | 0.77 | 0.75 | 0.84 | 0.37 |
Moderate | 0.62 | 0.7 | 0.66 | 0.8 | 0.71 | 0.71 | 0.41 |
Strong | 0.74 | 0.7 | 0.72 | 0.9 | 0.9 | 0.94 | 0.65 |
Average | 0.67 | 0.66 | 0.66 | 0.85 | 0.82 | 0.86 | 0.52 |
Unique-DT | |||||||
None | 0.7 | 0.57 | 0.63 | 0.83 | 0.88 | 0.95 | 0.61 |
Light | 0.57 | 0.63 | 0.6 | 0.75 | 0.75 | 0.8 | 0.41 |
Moderate | 0.64 | 0.69 | 0.66 | 0.75 | 0.76 | 0.8 | 0.37 |
Strong | 0.77 | 0.68 | 0.72 | 0.86 | 0.9 | 0.95 | 0.52 |
Average | 0.67 | 0.64 | 0.65 | 0.8 | 0.82 | 0.88 | 0.48 |
REF. Algorithms | Accuracy | REF. Algorithms | Accuracy |
---|---|---|---|
KNN [30] | 53.2–67.2% | GEP [36] | 85.16% |
GBM [30] | 61.22% | DT [36] | 81.48% |
NB [30] | 53.9–67.2% | Cloud [29] | 71.05% |
DT [35] | 73–93% | GSM-SVM [20] | 66.67–88.9% |
LRC [33] | 80.2–90.9% | GA-SVM [20] | 66.67–80% |
BN [31] | 91.75% | PSO-SVM [20] | 66.67–90% |
ENN [36] | 85.19% | ANFIS [26] | 66.5–95.6% |
4.4. Limitations
- Due to the relatively small size of the dataset (210), it may not fully capture the variability of the rockburst conditions across different geological settings. Therefore, obtaining a larger dataset could provide more robust results.
- The study only considers five input variables, which may not capture all the relevant factors that contribute to rockburst occurrence. Including more variables could improve the accuracy of the results.
- The study only uses DT, and a few other ML algorithms, for predicting rockburst conditions. Other approaches, such as physics-based models or hybrid models that combine data-driven and physics-based approaches, could provide complementary insights and improve the overall prediction performance.
- The study only uses a nominal classification approach for DT, which may not be optimal for handling continuous or ordinal variables. Using other classification approaches, such as binary or multi-class classification, could provide more flexibility and accuracy in modelling the rockburst conditions.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Askaripour, M.; Saeidi, A.; Rouleau, A.; Mercier-Langevin, P. Rockburst in Underground Excavations: A Review of Mechanism, Classification, and Prediction Methods. Undergr. Space 2022, 7, 577–607. [Google Scholar] [CrossRef]
- Aydan, Ö.; Geniş, M.; Akagi, T. Assessment of Susceptibility of Rock Bursting in Tunnelling in Hard Rocks. Mod. Tunn. Sci. Technol. 2001, 67, 369–380. [Google Scholar]
- Meng, F.; Zhou, H.; Wang, Z.; Zhang, L.; Kong, L.; Li, S.; Zhang, C.; Hu, S. Experimental Study of Factors Affecting Fault Slip Rockbursts in Deeply Buried Hard Rock Tunnels. Bull. Eng. Geol. Environ. 2017, 76, 1167–1182. [Google Scholar] [CrossRef]
- Zhu, W.C.; Li, Z.H.; Zhu, L.; Tang, C.A. Numerical Simulation on Rockburst of Underground Opening Triggered by Dynamic Disturbance. Tunn. Undergr. Space Technol. 2010, 25, 587–599. [Google Scholar] [CrossRef]
- Hoek, E.; Brown, E.T. Underground Excavations in Rock, 1st ed.; The Institution of Mining and Metallurgy: London, UK, 1996; ISBN 978-0-419-16030-4. [Google Scholar]
- Kadkhodaei, M.; Ghasemi, E. Prediction of the Occurrence and Severity of Rockburst Using MARS Technique. In Proceedings of the 8th Iranian Mining Engineering Conference, Birjand, Iran, 19 February 2020. [Google Scholar]
- Lu, C.-P.; Liu, Y.; Zhang, N.; Zhao, T.-B.; Wang, H.-Y. In-Situ and Experimental Investigations of Rockburst Precursor and Prevention Induced by Fault Slip. Int. J. Rock Mech. Min. Sci. 2018, 108, 86–95. [Google Scholar] [CrossRef]
- Kaiser, P.K.; McCreath, D.R.; Brummer, R.K.; Maloney, S.; Vasak, P.; Xiaoping, Y. Canadian Rockburst Support Handbook; Geomechanics Research Centre: Sudbury, ON, Canada, 1996. [Google Scholar]
- Kaiser, P.K. Excavation Vulnerability and Selection of Effective Rock Support to Mitigate Rockburst Damage. In Rockburst; Elsevier: Amsterdam, The Netherlands, 2018; pp. 473–518. ISBN 978-0-12-805054-5. [Google Scholar]
- Ribeiro e Sousa, L.; Miranda, T.; Leal e Sousa, R.; Tinoco, J. The Use of Data Mining Techniques in Rockburst Risk Assessment. Engineering 2017, 3, 552–558. [Google Scholar] [CrossRef]
- Sousa, L.; Miranda, T.; Sousa, R.; Tinoco, J. Deep Underground Engineering and The Use of Artificial Intelligence Techniques. Int. J. Earth Environ. Sci. 2018, 3, 20. [Google Scholar] [CrossRef]
- Whyatt, J.; Blake, W.; Lake, H.; Williams, T.; White, B. 60 Years of Rockbursting in the Coeur D’alene District of Northern Idaho, USA: Lessons Learned and Remaining Issues; Society for Mining, Metallurgy, and Exploration, Inc.: Littleton, CO, USA, 2002. [Google Scholar]
- Dietz, M.; Oremek, G.M.; Groneberg, D.A.; Bendels, M.H.K. Was ist ein Gebirgsschlag? Zent. Arb. Arb. Ergon. 2018, 68, 45–49. [Google Scholar] [CrossRef]
- Keneti, A.; Sainsbury, B.-A. Review of Published Rockburst Events and Their Contributing Factors. Eng. Geol. 2018, 246, 361–373. [Google Scholar] [CrossRef]
- Kidybiński, A. Bursting Liability Indices of Coal. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1981, 18, 295–304. [Google Scholar] [CrossRef]
- Xu, S.; Yu, S. A New Prediction Method of Rockburst in Underground Engineering Based on Elastic Energy Index. In Proceedings of the 2016 International conference of Civil, Structure and Envirinmental Engineering, Guangzhou, China, 12–13 March 2016. [Google Scholar]
- Ortlepp, W.D.; Stacey, T.R. Rockburst Mechanisms in Tunnels and Shafts. Tunn. Undergr. Space Technol. 1994, 9, 59–65. [Google Scholar] [CrossRef]
- Blake, W.; Hedley, D.G.F. Rockbursts: Case Studies from North American Hard-Rock Mines; Society for Mining, Metallurgy, and Exploration, Inc.: Littleton, CO, USA, 2003; ISBN 978-0-87335-232-1. [Google Scholar]
- Russenes, B.F. Analysis of Rock Spalling for Tunnels in Steep Valley Sides. Master’s Thesis, Norwegian Institute of Technology, Trondheim, Norway, 1974. [Google Scholar]
- Zhou, J.; Li, X.; Shi, X. Long-Term Prediction Model of Rockburst in Underground Openings Using Heuristic Algorithms and Support Vector Machines. Saf. Sci. 2012, 50, 629–644. [Google Scholar] [CrossRef]
- Zhou, J.; Guo, H.; Koopialipoor, M.; Jahed Armaghani, D.; Tahir, M.M. Investigating the Effective Parameters on the Risk Levels of Rockburst Phenomena by Developing a Hybrid Heuristic Algorithm. Eng. Comput. 2021, 37, 1679–1694. [Google Scholar] [CrossRef]
- Gong, F.; Li, X. A distance discriminant analysis method for prediction of possibility and classification of rockburst and its application. Yanshilixue Yu Gongcheng Xuebao Chin. J. Rock Mech. Eng. 2007, 26, 1012–1018. [Google Scholar]
- Han, J.; Kamber, M.; Pei, J. Data Mining: Concepts and Techniques, 3rd ed.; The Morgan Kaufmann Series in Data Management Systems; Elsevier: Amsterdam, The Netherlands, 2011; ISBN 978-0-12-381480-7. [Google Scholar]
- Wang, S.; Zhou, J.; Li, C.; Armaghani, D.J.; Li, X.; Mitri, H.S. Rockburst Prediction in Hard Rock Mines Developing Bagging and Boosting Tree-Based Ensemble Techniques. J. Cent. South Univ. 2021, 28, 527–542. [Google Scholar] [CrossRef]
- Dong, L.; Li, X.; Peng, K. Prediction of Rockburst Classification Using Random Forest. Trans. Nonferrous Met. Soc. China 2013, 23, 472–477. [Google Scholar] [CrossRef]
- Adoko, A.C.; Gokceoglu, C.; Wu, L.; Zuo, Q.J. Knowledge-Based and Data-Driven Fuzzy Modeling for Rockburst Prediction. Int. J. Rock Mech. Min. Sci. 2013, 61, 86–95. [Google Scholar] [CrossRef]
- Liu, Z.; Shao, J.; Xu, W.; Meng, Y. Prediction of Rock Burst Classification Using the Technique of Cloud Models with Attribution Weight. Nat. Hazards 2013, 68, 549–568. [Google Scholar] [CrossRef]
- Zhou, J.; Shi, X.; Huang, R.; Qiu, X.; Chen, C. Feasibility of Stochastic Gradient Boosting Approach for Predicting Rockburst Damage in Burst-Prone Mines. Trans. Nonferrous Met. Soc. China 2016, 26, 1938–1945. [Google Scholar] [CrossRef]
- Zhou, K.; Lin, Y.; Deng, H.; Li, J.; Liu, C. Prediction of Rock Burst Classification Using Cloud Model with Entropy Weight. Trans. Nonferrous Met. Soc. China 2016, 26, 1995–2002. [Google Scholar] [CrossRef]
- Zhou, J.; Li, X.; Mitri, H.S. Classification of Rockburst in Underground Projects: Comparison of Ten Supervised Learning Methods. J. Comput. Civ. Eng. 2016, 30, 04016003. [Google Scholar] [CrossRef]
- Li, N.; Feng, X.; Jimenez, R. Predicting Rock Burst Hazard with Incomplete Data Using Bayesian Networks. Tunn. Undergr. Space Technol. 2017, 61, 61–70. [Google Scholar] [CrossRef]
- Adoko, A.C.; Zvarivadza, T. A Bayesian Approach for Predicting Rockburst: 52nd U.S. Rock Mechanics/Geomechanics Symposium; American Rock Mechanics Association (ARMA18): Seattle, WA, USA, 2018. [Google Scholar]
- Li, N.; Jimenez, R. A Logistic Regression Classifier for Long-Term Probabilistic Prediction of Rock Burst Hazard. Nat. Hazards J. Int. Soc. Prev. Mitig. Nat. Hazards 2018, 90, 197–215. [Google Scholar] [CrossRef]
- Xu, C.; Liu, X.; Wang, E.; Zheng, Y.; Wang, S. Rockburst Prediction and Classification Based on the Ideal-Point Method of Information Theory. Tunn. Undergr. Space Technol. 2018, 81, 382–390. [Google Scholar] [CrossRef]
- Pu, Y.; Apel, D.B.; Lingga, B. Rockburst Prediction in Kimberlite Using Decision Tree with Incomplete Data. J. Sustain. Min. 2018, 17, 158–165. [Google Scholar] [CrossRef]
- Shirani Faradonbeh, R.; Taheri, A. Long-Term Prediction of Rockburst Hazard in Deep Underground Openings Using Three Robust Data Mining Techniques. Eng. Comput. 2019, 35, 659–675. [Google Scholar] [CrossRef]
- Afraei, S.; Shahriar, K.; Madani, S.H. Developing Intelligent Classification Models for Rock Burst Prediction after Recognizing Significant Predictor Variables, Section 2: Designing Classifiers. Tunn. Undergr. Space Technol. 2019, 84, 522–537. [Google Scholar] [CrossRef]
- Pu, Y.; Apel, D.B.; Xu, H. Rockburst Prediction in Kimberlite with Unsupervised Learning Method and Support Vector Classifier. Tunn. Undergr. Space Technol. 2019, 90, 12–18. [Google Scholar] [CrossRef]
- Ghasemi, E.; Gholizadeh, H.; Adoko, A.C. Evaluation of Rockburst Occurrence and Intensity in Underground Structures Using Decision Tree Approach. Eng. Comput. 2020, 36, 213–225. [Google Scholar] [CrossRef]
- Le, L.T.; Nguyen, H.; Dou, J.; Zhou, J. A Comparative Study of PSO-ANN, GA-ANN, ICA-ANN, and ABC-ANN in Estimating the Heating Load of Buildings’ Energy Efficiency for Smart City Planning. Appl. Sci. 2019, 9, 2630. [Google Scholar] [CrossRef]
- Zhou, J.; Li, C.; Arslan, C.A.; Hasanipanah, M.; Bakhshandeh Amnieh, H. Performance Evaluation of Hybrid FFA-ANFIS and GA-ANFIS Models to Predict Particle Size Distribution of a Muck-Pile after Blasting. Eng. Comput. 2021, 37, 265–274. [Google Scholar] [CrossRef]
- Marzi, H.; Haj Darwish, A.; Helfawi, H. Training ANFIS Using the Enhanced Bees Algorithm and Least Squares Estimation. Intell. Autom. Soft Comput. 2017, 23, 227–234. [Google Scholar] [CrossRef]
- Yu, Z.; Shi, X.; Zhou, J.; Chen, X.; Miao, X.; Teng, B.; Ipangelwa, T. Prediction of Blast-Induced Rock Movement During Bench Blasting: Use of Gray Wolf Optimizer and Support Vector Regression. Nat. Resour. Res. 2020, 29, 843–865. [Google Scholar] [CrossRef]
- Zhang, S. Cost-Sensitive KNN Classification. Neurocomputing 2020, 391, 234–242. [Google Scholar] [CrossRef]
- Zhou, J.; Li, X.; Mitri, H.S. Evaluation Method of Rockburst: State-of-the-Art Literature Review. Tunn. Undergr. Space Technol. 2018, 81, 632–659. [Google Scholar] [CrossRef]
- Zhang, J.J.; Fu, B.J.; Li, Z.K.; Song, S.W.; Shang, Y.J. Criterion and Classification for Strain Mode Rockbursts Based on Five-Factor Comprehensive Method. In Proceedings of the 12th ISRM congress, Beijing, China, 16 October 2011. [Google Scholar]
- Zhang, G.; Gao, Q.; Du, J.; Li, K. Rockburst Criterion Based on Artificial Neural Networks and Nonlinear Regression. Zhongnan Daxue Xuebao Ziran Kexue Ban J. Cent. South Univ. Sci. Technol. 2013, 44, 2977–2981. [Google Scholar]
- Hornik, K.; Buchta, C.; Hothorn, T.; Karatzoglou, A.; Meyer, D.; Zeileis, A. Rweka. RSTUDIO 2021, 0.4–44, 1–34. [Google Scholar]
- Hong, H.; Liu, J.; Bui, D.T.; Pradhan, B.; Acharya, T.D.; Pham, B.T.; Zhu, A.X.; Chen, W.; Ahmad, B.B. Landslide Susceptibility Mapping Using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest Ensembles in the Guangchang Area (China). Catena 2018, 163, 399–413. [Google Scholar] [CrossRef]
- Patil, T.R.; Sherekar, S. Performance Analysis of Naive Bayes and J48 Classification Algorithm for Data Classification. Int. J. Comput. Sci. Appl. 2013, 6, 256–261. [Google Scholar]
- Chollet, F.; Kalinowski, T.; Allaire, J.J. Deep Learning with R, 2nd ed.; Manning Publications Co.: Shelter Island, NY, USA, 2022; ISBN 978-1-63343-984-9. [Google Scholar]
Rockburst Condition/Intensity | Failure Characteristics |
---|---|
None | No sound of rockburst and rockburst activities. |
Light | The surrounding rock is deformed, cracked, or rib spalled, there is a weak sound, and no ejection phenomenon. |
Moderate | The surrounding rock is deformed and fractured, and there is a considerable number of rock chip ejections, loose and sudden destruction, accompanied by crisp cracking, and often presented in the local cavern of surrounding rock. |
Strong | The surrounding rock is busted severely, and suddenly thrown out or ejected into the tunnel, accompanied by a strong burst and roaring sound, air spray, and storm phenomena, with continuity that rapidly expands to the deep, surrounding rock. |
Variables | Minimum | Maximum | Mean | Std. Deviation | Median | Skew |
---|---|---|---|---|---|---|
Depth (m) | 100 | 2520 | 730.03 | 354.85 | 700 | 1.56 |
SI (σθ/σc) | 0.1 | 5 | 0.65 | 0.78 | 0.48 | 3.52 |
BI (σc/σt) | 0.26 | 80 | 19.91 | 14.8 | 14.73 | 2.14 |
EEI | 0.81 | 30 | 5.23 | 4.44 | 4.4 | 3.05 |
Model Approach | Model | Hyperparameters | Dataset Used |
---|---|---|---|
DT-RT | J48 (Default) | Confidence Factor: 0.25 reduced Error Pruning: T minNumObj: 2 | Individual Rock types |
Unique-DT | J48 (Default) | Confidence Factor: 0.25 reduced Error Pruning: T minNumObj: 3 | All Rock types |
Multiple ML | RF (Default) | I = 200 (Number of trees) K = 10 (Number of features) depth = 10 (Max depth of each tree) | All Rock types |
KNN (Default) | K = 1 (number of neighbors to use) | ||
AdaBoostM1 | Default base learner: J48 P = 10 (number of iterations) L = 0.1 (learning rate) | ||
SVM (Default) | Kernel: RBF C = 1 (complexity constant) L = 1.0e-12 (tolerance parameter) P = 1.0e-10 (epsilon) | ||
ANN | L = 0.2 (Learning rate) M = 0.3 (Momentum) N = 500 (Number of epochs) H = 1 (Number of hidden layers) Sigmoid (Activation function) |
IGNEOUS | |||||||
---|---|---|---|---|---|---|---|
Rockburst Condition | Precision | Recall | F1 | AUC | ACC | SP | MCC |
None | 0.61 | 0.65 | 0.63 | 0.83 | 0.87 | 0.92 | 0.55 |
Light | 0.56 | 0.56 | 0.56 | 0.68 | 0.71 | 0.78 | 0.34 |
Moderate | 0.64 | 0.68 | 0.66 | 0.72 | 0.77 | 0.81 | 0.48 |
Strong | 0.67 | 0.56 | 0.61 | 0.78 | 0.87 | 0.94 | 0.53 |
Average | 0.62 | 0.61 | 0.62 | 0.75 | 0.81 | 0.86 | 0.48 |
METAMORPHIC | |||||||
None | 0.88 | 0.78 | 0.82 | 0.98 | 0.95 | 0.98 | 0.8 |
Light | 0.73 | 0.67 | 0.7 | 0.88 | 0.88 | 0.93 | 0.62 |
Moderate | 0.67 | 0.7 | 0.68 | 0.8 | 0.78 | 0.82 | 0.51 |
Strong | 0.72 | 0.76 | 0.74 | 0.9 | 0.84 | 0.88 | 0.63 |
Average | 0.75 | 0.73 | 0.74 | 0.89 | 0.86 | 0.9 | 0.64 |
SEDIMENTARY | |||||||
None | 0.45 | 0.45 | 0.45 | 0.72 | 0.76 | 0.84 | 0.3 |
Light | 0.45 | 0.63 | 0.53 | 0.63 | 0.63 | 0.64 | 0.25 |
Moderate | 0.46 | 0.35 | 0.4 | 0.56 | 0.63 | 0.78 | 0.14 |
Strong | 0 | 0 | 0 | 0.54 | 0.84 | 0.93 | −0.09 |
Average | 0.34 | 0.36 | 0.35 | 0.61 | 0.72 | 0.8 | 0.15 |
Rockburst Condition | Precision | Recall | F1 | AUC | ACC | SP | MCC |
---|---|---|---|---|---|---|---|
None | 0.70 | 0.57 | 0.63 | 0.83 | 0.88 | 0.95 | 0.61 |
Light | 0.57 | 0.63 | 0.60 | 0.75 | 0.75 | 0.80 | 0.41 |
Moderate | 0.64 | 0.69 | 0.66 | 0.75 | 0.76 | 0.80 | 0.37 |
Strong | 0.77 | 0.68 | 0.72 | 0.86 | 0.90 | 0.95 | 0.52 |
Average | 0.67 | 0.64 | 0.65 | 0.80 | 0.82 | 0.88 | 0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Owusu-Ansah, D.; Tinoco, J.; Lohrasb, F.; Martins, F.; Matos, J. A Decision Tree for Rockburst Conditions Prediction. Appl. Sci. 2023, 13, 6655. https://doi.org/10.3390/app13116655
Owusu-Ansah D, Tinoco J, Lohrasb F, Martins F, Matos J. A Decision Tree for Rockburst Conditions Prediction. Applied Sciences. 2023; 13(11):6655. https://doi.org/10.3390/app13116655
Chicago/Turabian StyleOwusu-Ansah, Dominic, Joaquim Tinoco, Faramarzi Lohrasb, Francisco Martins, and José Matos. 2023. "A Decision Tree for Rockburst Conditions Prediction" Applied Sciences 13, no. 11: 6655. https://doi.org/10.3390/app13116655