Magneto-Optical Traps for Cold Atomic Gravimetry: Research Status and Development Trends
Abstract
1. Introduction
2. Working Principle of the MOT
2.1. Cooling of the Atoms
2.2. Trapping of the Atoms
3. Classification and Application of MOTs
3.1. Application of Conventional Six-Beam MOT
3.2. Other MOT Attempts
3.3. Rise of Single Beamed MOTs
3.4. Two-Dimensional MOT for Precooling
3.5. Extremely Miniaturized MOT Development
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, C.; Long, J.; Huang, M.; Chen, B.; Yang, Y.; Jiang, X.; Xiang, C.; Ma, Z.; He, D.; Chen, L.; et al. Continuous high-precision gravity measurement over 5 months of a Portable Atom Gravimeter in field application. ESS Open Arch. 2023. preprint. [Google Scholar] [CrossRef]
- Chen, X.F.; Hu, D.J.; Zhao, J.; Wu, W.W.; Zhao, H.; Liang, H.; Huang, X.Y. Current status and progress of field experimental observations in the Sichuan region of the China Seismological Science Experimental Range. Geod. Geodyn. 2022, 42, 193–198. [Google Scholar]
- Fu, Z.; Wu, B.; Cheng, B.; Zhou, Y.; Weng, K.; Zhu, D.; Wang, Z.; Lin, Q. A new type of compact gravimeter for long-term absolute gravity monitoring. Metrologia 2019, 56, 025001. [Google Scholar] [CrossRef]
- Stock, M.; Davis, R.; de Mirandés, E.; Milton, M.J.T. The revision of the SI—The result of three decades of progress in metrology. Metrologia 2019, 56, 022001. [Google Scholar] [CrossRef]
- Zhu, D.; Zhou, Y.; Wu, B.; Weng, K.; Wang, K.; Cheng, B.; Lin, Q. Metrological traceability method for atomic absolute gravimeters. Appl. Opt. 2021, 60, 7910–7920. [Google Scholar] [CrossRef] [PubMed]
- Bassi, A.; Cacciapuoti, L.; Capozziello, S.; Dell’Agnello, S.; Diamanti, E.; Giulini, D.; Iess, L.; Jetzer, P.; Joshi, S.K.; Landragin, A.; et al. A way forward for fundamental physics in space. NPJ Microgravity 2022, 8, 49. [Google Scholar] [CrossRef]
- Badurina, L.; Buchmueller, O.; Ellis, J.; Lewicki, M.; McCabe, C.; Vaskonen, V. Prospective sensitivities of atom interferometers to gravitational waves and ultralight dark matter. Philos. Trans. R. Soc. A 2022, 380, 20210060. [Google Scholar] [CrossRef] [PubMed]
- Tie, J.; Cao, J.; Wu, M.; Lian, J.; Cai, S.; Wang, L. Compensation of Horizontal Gravity Disturbances for High Precision Inertial Navigation. Sensors 2018, 18, 906. [Google Scholar] [CrossRef][Green Version]
- Barrett, B.; Antoni-Micollier, L.; Chichet, L.; Battelier, B.; Lévèque, T.; Landragin, A.; Bouyer, P. Dual matter-wave inertial sensors in weightlessness. Nat. Commun. 2016, 7, 13786. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wang, H.; Wang, K.; Xu, Y.; Tang, Y.; Wu, B.; Cheng, B.; Wu, L.; Zhou, Y.; Weng, K.; Zhu, D.; et al. A Truck-Borne System Based on Cold Atom Gravimeter for Measuring the Absolute Gravity in the Field. Sensors 2022, 22, 6172. [Google Scholar] [CrossRef]
- Peters, A.; Chung, K.Y.; Chu, S. High-precision gravity measurements using atom interferometry. Metrologia 2001, 38, 25–61. [Google Scholar] [CrossRef]
- Maxwell, J.C., VIII. A dynamical theory of the electromagnetic field. Philos. Trans. R. Soc. Lond. 1865, 155, 459–512. [Google Scholar]
- Letkhov, V.S.; Minogin, V.G. Trapping and storage of atoms in a laser field. Appl. Phys. 1978, 17, 99–103. [Google Scholar] [CrossRef]
- Ashkin, A.; Gordon, J.P. Cooling and trapping of atoms by resonance radiation pressure. Opt. Lett. 1979, 4, 161–163. [Google Scholar] [CrossRef] [PubMed]
- Dalibard, J.; Reynaud, S.; Cohen-Tannoudji, C. Proposals of stable optical traps for neutral atoms. Opt. Commun. 1983, 47, 395–399. [Google Scholar] [CrossRef]
- Ashkin, A.; Gordon, J.P. Stability of radiation-pressure particle traps: An optical Earnshaw theorem. Opt. Lett. 1983, 8, 511–513. [Google Scholar] [CrossRef] [PubMed]
- Ashkin, A. Stable radiation-pressure particle traps using alternating light beams. Opt. Lett. 1984, 9, 454. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.; Bjorkholm, J.E.; Ashkin, A.; Cable, A. Experimental observation of optically trapped atoms. Phys. Rev. Lett. 1986, 57, 314–317. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Pritchard, D.E.; Raab, E.L.; Bagnato, V.; Wieman, C.E.; Watts, R.N. Light Traps Using Spontaneous Forces. Phys. Rev. Lett. 1986, 57, 310–313. [Google Scholar] [CrossRef] [PubMed]
- Raab, E.L.; Prentiss, M.; Cable, A.; Chu, S.; Pritchard, D.E. Trapping of Neutral Sodium Atoms with Radiation Pressure. Phys. Rev. Lett. 1987, 59, 2631–2634. [Google Scholar] [CrossRef][Green Version]
- Balykin, V.I.; Letokhov, V.S.; Minogin, V.G. Laser Control of the Motion of Neutral Atoms and Optical Atomic Traps. Phys. Scr. 1988, T22, 119–127. [Google Scholar] [CrossRef]
- Cohen Tannoudji, C.N.; Phillips, W.D. New Mechanisms for Laser Cooling. Phys. Today 1990, 43, 33–40. [Google Scholar] [CrossRef]
- Chu, S. Laser Trapping of Neutral Particles. Sci. Am.-SCI AMER 1992, 266, 71–76. [Google Scholar] [CrossRef]
- Steane, A.M.; Foot, C.J. Laser Cooling below the Doppler Limit in a Magneto-Optical Trap. Europhys. Lett. (EPL) 1991, 14, 231–236. [Google Scholar] [CrossRef]
- Zhang, D.F.; Gao, T.Y.; Kong, L.R.; Li, K.; Jiang, K.J. Sub-Doppler cooling of rubidium 87 atoms using decompressed magneto-optical trap technique. J. Quantum Electron. 2018, 35, 308–312. [Google Scholar]
- Metcalf, H.J.; van der Straten, P. Laser cooling and trapping of atoms. J. Opt. Soc. Am. B 2003, 20, 887. [Google Scholar] [CrossRef][Green Version]
- Gibble, K.E.; Kasapi, S.; Chu, S. Improved magneto-optic trapping in a vapor cell. Opt. Lett. 1992, 17, 526–528. [Google Scholar] [CrossRef] [PubMed]
- Steane, A.M.; Chowdhury, M.; Foot, C.J. Radiation force in the magneto-optical trap. J. Opt. Soc. Am. B 1992, 9, 2142. [Google Scholar] [CrossRef]
- Gabbanini, C.; Evangelista, A.; Gozzini, S.; Lucchesini, A.; Fioretti, A.; Müller, J.H.; Colla, M.; Arimondo, E. Scaling laws in magneto-optical traps. Europhys. Lett. (EPL) 1997, 37, 251–256. [Google Scholar] [CrossRef]
- Edwards, N.H.; Cooper, C.J.; Zetie, K.P.; Foot, C.J.; Steane, A.M.; Szriftgiser, P.; Perrin, H.; Dalibard, J.; Townsend, C.G. Phase-space density in the magneto-optical trap. Phys. Rev. A 1995, 52, 1423–1440. [Google Scholar]
- Lett, P.D.; Watts, R.N.; Westbrook, C.I.; Phillips, W.D.; Gould, P.L.; Metcalf, H.J. Observation of atoms laser cooled below the Doppler limit. Phys. Rev. Lett. 1988, 61, 169–172. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wang, X.; Hou, X.K.; Lu, F.F.; Hao, L.L.; He, J.; Wang, J.M. Equivalent temperature measurement of cold atomic samples using a simplified time-of-flight fluorescence imaging method. J. Quantum Opt. 2022, 28, 223–230. [Google Scholar]
- Ketterle, W.; Davis, K.B.; Joffe, M.A.; Martin, A.; Pritchard, D.E. High densities of cold atoms in a dark spontaneous-force optical trap. Phys. Rev. Lett. 1993, 70, 2253–2256. [Google Scholar] [CrossRef] [PubMed]
- Walker, T.; Feng, P.; Hoffmann, D.; Williamson, R.S. Spin-polarized spontaneous-force atom trap. Phys. Rev. Lett. 1992, 69, 2168–2171. [Google Scholar] [CrossRef] [PubMed]
- Camposeo, A.; Piombini, A.; Cervelli, F.; Tantussi, F.; Fuso, F.; Arimondo, E. A cold cesium atomic beam produced out of a pyramidal funnel. Opt. Commun. 2001, 200, 231–239. [Google Scholar] [CrossRef]
- Bowden, W.; Hobson, R.; Hill, I.R.; Vianello, A.; Schioppo, M.; Silva, A.; Margolis, H.S.; Baird, P.; Gill, P. A pyramid MOT with integrated optical cavities as a cold atom platform for an optical lattice clock. Sci. Rep. 2019, 9, 11704. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kim, J.A.; Lee, K.I.; Noh, H.R.; Jhe, W.; Ohtsu, M. Atom trap in an axicon mirror. Opt. Lett. 1997, 22, 117. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.I.; Kim, J.A.; Noh, H.R.; Jhe, W. Single-beam atom trap in a pyramidal and conical hollow mirror. Opt. Lett. 1996, 21, 1177. [Google Scholar] [CrossRef] [PubMed]
- Bhushan, S.; Easwaran, R.K. Theoretical design for generation of slow light in a two-dimensional magneto optical trap using electromagnetically induced transparency. Appl. Opt. 2017, 56, 3817–3823. [Google Scholar] [CrossRef] [PubMed]
- Hummon, M.T.; Yeo, M.; Stuhl, B.K.; Collopy, A.L.; Xia, Y.; Ye, J. 2D Magneto-optical trapping of diatomic molecules. Phys. Rev. Lett. 2013, 110, 143001. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ramirez-Serrano, J.; Yu, N.; Kohel, J.M.; Kellogg, J.R.; Maleki, L. Multistage two-dimensional magneto-optical trap as a compact cold atom beam source. Opt. Lett. 2006, 31, 682–684. [Google Scholar] [CrossRef] [PubMed]
- Yun, M.; Yin, J. Practical scheme to realize 2D array of BECs on an atom chip: Novel 2D magneto-optical and magnetic lattices. Opt. Express 2006, 14, 2539–2551. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Chen, J.F.; Liu, C.; Zhou, S.; Loy, M.M.; Wong, G.K.; Du, S. A dark-line two-dimensional magneto-optical trap of 85Rb atoms with high optical depth. Rev. Sci. Instrum. 2012, 83, 073102. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Barry, J.F.; McCarron, D.J.; Norrgard, E.B.; Steinecker, M.H.; DeMille, D. Magneto-optical trapping of a diatomic molecule. Nature 2014, 512, 286–289. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Monroe, C.; Swann, W.; Robinson, H.; Wieman, C. Very cold trapped atoms in a vapor cell. Phys. Rev. Lett. 1990, 65, 1571–1574. [Google Scholar] [CrossRef][Green Version]
- Freier, C.; Hauth, M.; Schkolnik, V.; Leykauf, B.; Schilling, M.; Wziontek, H.; Scherneck, H.; Müller, J.; Peters, A. Mobile quantum gravity sensor with unprecedented stability. J. Phys. Conf. Ser. 2016, 723, 012050. [Google Scholar] [CrossRef]
- Hauth, M.; Freier, C.; Schkolnik, V.; Senger, A.; Schmidt, M.; Peters, A. First gravity measurements using the mobile atom interferometer GAIN. Appl. Phys. B 2013, 113, 49–55. [Google Scholar] [CrossRef]
- Bidel, Y.; Zahzam, N.; Blanchard, C.; Bonnin, A.; Cadoret, M.; Bresson, A.; Rouxel, D.; Lequentrec-Lalancette, M.F. Absolute marine gravimetry with matter-wave interferometry. Nat. Commun. 2018, 9, 6172. [Google Scholar] [CrossRef][Green Version]
- Bidel, Y.; Zahzam, N.; Bresson, A.; Blanchard, C.; Cadoret, M.; Olesen, A.V.; Forsberg, R. Absolute airborne gravimetry with a cold atom sensor. Geodesy 2020, 94, 1–9. [Google Scholar] [CrossRef][Green Version]
- Li, Z.Y.; Hu, M.Z.; Wang, Y.; Liu, Z.W.; Wu, Y.L.; Zhang, X.L.; Wang, J.P.; Wang, J.; Li, F. Field test results of a domestic rubidium atomic absolute gravimeter. Proc. Chin. Jt. Annu. Geosci. Conf. 2021, 29, 1. [Google Scholar]
- Shimizu, F.; Shimizu, K.; Takuma, H. Laser cooling and trapping of Ne metastable atoms. Phys. Rev. A 1989, 39, 2758–2760. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, F.; Shimizu, K.; Takuma, H. Four-beam laser trap of neutral atoms. Opt. Lett. 1991, 16, 339. [Google Scholar] [CrossRef]
- Arlt, J.; Bance, P.; Hopkins, S.; Martin, J.; Webster, S.; Wilson, A.; Zetie, K.; Foot, C.J. Suppression of collisional loss from a magnetic trap. J. Phys. B At. Mol. Opt. Phys. 1998, 31, L321–L327. [Google Scholar] [CrossRef]
- di Stefano, A.; Wilkowski, D.; Müller, J.H.; Arimondo, E. Five-beam magneto-optical trap and optical molasses. Appl. Phys. B 1999, 69, 263–268. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, C.; Chen, P.; Cheng, B.; Zhu, D.; Wang, K.; Wang, X.; Wu, B.; Qiao, Z.; Lin, Q.; et al. A Testing Method for Shipborne Atomic Gravimeter Based on the Modulated Coriolis Effect. Sensors 2023, 23, 881. [Google Scholar] [CrossRef] [PubMed]
- Che, H.; Li, A.; Fang, J.; Ge, G.; Gao, W.; Zhang, Y.; Liu, C.; Xu, J.N.; Chang, L.B.; Huang, C.F.; et al. Experimental study on shipboard dynamic absolute gravity measurement based on cold atomic gravimeter. J. Phys. 2022, 71, 148–156. [Google Scholar]
- Geiger, R.; Ménoret, V.; Stern, G.; Zahzam, N.; Cheinet, P.; Battelier, B.; Villing, A.; Moron, F.; Lours, M.; Bidel, Y.; et al. Detecting inertial effects with airborne matter-wave interferometry. Nat. Commun. 2011, 2, 474. [Google Scholar] [CrossRef][Green Version]
- Wu, B.; Zhou, Y.; Cheng, B.; Zhu, D.; Wang, K.N.; Zhu, X.X.; Chen, P.J.; Weng, K.X.; Yang, Q.H.; Lin, J.H.; et al. Vehicle-mounted static absolute gravity measurements based on an atomic gravimeter. J. Phys. 2020, 69, 25–32. [Google Scholar]
- Cheng, B.; Chen, P.J.; Zhou, Y.; Wang, K.N.; Zhu, D.; Chu, L.; Weng, K.X.; Wang, H.L.; Peng, S.P.; Wang, X.L.; et al. Absolute gravity dynamical mobility measurement experiment based on cold atomic gravimeter. J. Phys. 2022, 71, 247–257. [Google Scholar]
- Zhang, X.; Zhong, J.; Tang, B.; Chen, X.; Zhu, L.; Huang, P.; Wang, J.; Zhan, M. Compact portable laser system for mobile cold atom gravimeters. Appl. Opt. 2018, 57, 6545–6551. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Zhang, H.; Zhang, K.; Duan, X.C.; Hu, Z.K.; Chen, L.L.; Zhou, M.K. A compact laser system for a portable atom interferometry gravimeter. Rev. Sci. Instrum. 2019, 90, 043104. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Hu, J.; Chen, X.; Zhu, H.; Zhou, L.; Zhong, J.; Wang, J.; Zhan, M. Realization of a compact one-seed laser system for atom interferometer-based gravimeters. Opt. Express 2018, 26, 1586–1596. [Google Scholar] [CrossRef] [PubMed]
- Sabulsky, D.O.; Junca, J.; Lefèvre, G.; Zou, X.; Bertoldi, A.; Battelier, B.; Prevedelli, M.; Stern, G.; Santoire, J.; Beaufils, Q.; et al. A fibered laser system for the MIGA large scale atom interferometer. Sci. Rep. 2020, 10, 3268. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Xu, R.; Wang, Q.; Yan, S.; Hou, Z.; He, C.; Ji, Y.; Li, Z.; Jiang, J.; Qiao, B.; Zhou, L.; et al. Modular-assembled laser system for a long-baseline atom interferometer. Appl. Opt. 2022, 61, 4648–4654. [Google Scholar] [CrossRef] [PubMed]
- Adams, C.S.; Riis, E. Laser cooling and trapping of neutral atoms. Prog. Quant. Electron. 1997, 21, 1–79. [Google Scholar] [CrossRef]
- Lu, Z.T.; Corwin, K.L.; Renn, M.J.; Anderson, M.H.; Cornell, E.A.; Wieman, C.E. Low-Velocity Intense Source of Atoms from a Magneto-optical Trap. Phys. Rev. Lett. 1996, 77, 3331–3334. [Google Scholar] [CrossRef] [PubMed]
- Williamson, R.; Voytas, P.; Newell, R.; Walker, T. A magneto-optical trap loaded from a pyramidal funnel. Opt. Express 1998, 3, 111–117. [Google Scholar] [CrossRef]
- Arlt, J.J.; Maragò, O.; Webster, S.; Hopkins, S.; Foot, C.J. A pyramidal magneto-optical trap as a source of slow atoms. Opt. Commun. 1998, 157, 303–309. [Google Scholar] [CrossRef]
- Kohel, J.M.; Ramirez-Serrano, J.; Thompson, R.J.; Maleki, L.; Bliss, J.L.; Libbrecht, K.G. Generation of an intense cold-atom beam from a pyramidal magneto-optical trap: Experiment and simulation. J. Opt. Soc. Am. B 2003, 20, 1161. [Google Scholar] [CrossRef]
- Bodart, Q.; Merlet, S.; Malossi, N.; Dos Santos, F.P.; Bouyer, P.; Landragin, A. A cold atom pyramidal gravimeter with a single laser beam. Appl. Phys. Lett. 2010, 96, 134101. [Google Scholar] [CrossRef][Green Version]
- Kasevich, M.; Weiss, D.S.; Riis, E.; Moler, K.; Kasapi, S.; Chu, S. Atomic velocity selection using stimulated Raman transitions. Phys. Rev. Lett. 1991, 66, 2297–2300. [Google Scholar] [CrossRef] [PubMed]
- Lautier, J.; Landragin, A.; Battelier, B.; Bouyer, P. MiniAtom: Realization of an Absolute Compact Atomic Gravimeter; IEEE: New York, NY, USA, 2013; pp. 448–449. [Google Scholar]
- Louchet-Chauvet, A.; Farah, T.; Bodart, Q.; Clairon, A.; Landragin, A.; Merlet, S.; Santos, F.P.D. The influence of transverse motion within an atomic gravimeter. New J. Phys. 2011, 13, 065025. [Google Scholar] [CrossRef][Green Version]
- Ménoret, V.; Vermeulen, P.; Le Moigne, N.; Bonvalot, S.; Bouyer, P.; Landragin, A.; Desruelle, B. Gravity measurements below 10–9 g with a transportable absolute quantum gravimeter. Sci. Rep. 2018, 8, 12300. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Weiner, S.; Pagel, Z.; Malek, B.S.; Muller, H. Mobile Quantum Gravimeter with a Novel Pyramidal Magneto-Optical Trap. In Proceedings of the CLEO, Washington, DC, USA, 10–15 May 2020; pp. 1–2. [Google Scholar]
- Wu, X.; Pagel, Z.; Malek, B.S.; Nguyen, T.H.; Zi, F.; Scheirer, D.S.; Muller, H. Gravity surveys using a mobile atom interferometer. Sci. Adv. 2019, 5, eaax0800. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wu, X.; Zi, F.; Dudley, J.; Bilotta, R.J.; Canoza, P.; Müller, H. Multiaxis atom interferometry with a single-diode laser and a pyramidal magneto-optical trap. Optica 2017, 4, 1545. [Google Scholar] [CrossRef]
- Dieckmann, K.; Spreeuw, R.J.C.; Weidemüller, M.; Walraven, J.T.M. Two-dimensional magneto-optical trap as a source of slow atoms. Phys. Rev. A 1998, 58, 3891–3895. [Google Scholar] [CrossRef][Green Version]
- Zeng, D.J.; Huang, M.; Zhang, H.; Huang, K.K.; Lu, X.H. A two-dimensional cold atomic beam system for increasing the loading rate of three-dimensional magneto-optical traps. Infrared Laser Eng. 2019, 48, 73–78. [Google Scholar]
- Wang, K.N.; Xu, H.; Zhou, Y.; Xu, Y.P.; Song, W.; Tang, H.Z.; Wang, Q.W.; Zhu, D.; Weng, K.X.; Wang, H.L.; et al. Rapid mapping of absolute gravity in the external field based on a vehicle-mounted atomic gravimeter. J. Phys. 2022, 71, 347–356. [Google Scholar]
- Jin, S.; Gao, J.; Chandrashekara, K.; Gölzhäuser, C.; Schöner, J.; Chomaz, L. A 2D MOT of dysprosium atoms as a compact source for efficient loading of a narrow-line 3D MOT. arXiv 2023, arXiv:2303.05191. [Google Scholar]
- Zhang, Y.; Liu, Q.; Sun, J.; Xu, Z.; Wang, A. Enhanced cold mercury atom production with two-dimensional magneto-optical trap. Chin. Phys B 2022, 31, 073701. [Google Scholar] [CrossRef]
- Eriksson, S.; Trupke, M.; Powell, H.F.; Sahagun, D.; Sinclair, C.D.J.; Curtis, E.A.; Sauer, B.E.; Hinds, E.A.; Moktadir, Z.; Gollasch, C.O.; et al. Integrated optical components on atom chips. Eur. Phys. J. D 2005, 35, 135–139. [Google Scholar] [CrossRef][Green Version]
- Trupke, M.; Ramirez-Martinez, F.; Curtis, E.A.; Ashmore, J.P.; Eriksson, S.; Hinds, E.A.; Moktadir, Z.; Gollasch, C.; Kraft, M.; Vijaya Prakash, G.; et al. Pyramidal micromirrors for microsystems and atom chips. Appl. Phys. Lett. 2006, 88, 071116. [Google Scholar] [CrossRef][Green Version]
- Blumenthal, D.J. Photonic integration for UV to IR applications. APL Photonics 2020, 5, 020903. [Google Scholar] [CrossRef][Green Version]
- Pollock, S.; Cotter, J.P.; Laliotis, A.; Hinds, E.A. Integrated magneto-optical traps on a chip. Opt. Express 2009, 17, 14109. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lewis, G.N.; Moktadir, Z.; Gollasch, C.; Kraft, M.; Pollock, S.; Ramirez-Martinez, F.; Ashmore, J.P.; Laliotis, A.; Trupke, M.; Hinds, E.A. Fabrication of Magnetooptical Atom Traps on a Chip. J. Microelectromech. Syst. 2009, 18, 347–353. [Google Scholar] [CrossRef][Green Version]
- Vangeleyn, M.; Griffin, P.F.; Riis, E.; Arnold, A.S. Single-laser, one beam, tetrahedral magneto-optical trap. Opt. Express 2009, 17, 13601–13608. [Google Scholar] [CrossRef][Green Version]
- Lee, J.; Grover, J.A.; Orozco, L.A.; Rolston, S.L. Sub-Doppler cooling of neutral atoms in a grating magneto-optical trap. J. Opt. Soc. Am. B 2013, 30, 2869. [Google Scholar] [CrossRef][Green Version]
- McGilligan, J.P.; Griffin, P.F.; Elvin, R.; Ingleby, S.J.; Riis, E.; Arnold, A.S. Grating chips for quantum technologies. Sci. Rep. 2017, 7, 387. [Google Scholar] [CrossRef][Green Version]
- Barker, D.S.; Norrgard, E.B.; Klimov, N.N.; Fedchak, J.A.; Scherschligt, J.; Eckel, S. Single-beam Zeeman slower and magneto-optical trap using a nanofabricated grating. Phys. Rev. Appl. 2019, 11, 064023. [Google Scholar] [CrossRef][Green Version]
- McGehee, W.R.; Zhu, W.; Barker, D.S.; Westly, D.; Yulaev, A.; Klimov, N.; Agrawal, A.; Eckel, S.; Aksyuk, V.; McClelland, J.J. Magneto-optical trapping using planar optics. New J. Phys. 2021, 23, 013021. [Google Scholar] [CrossRef]
- Earl, L.; Vovrosh, J.; Wright, M.; Roberts, D.; Winch, J.; Perea-Ortiz, M.; Lamb, A.; Hayati, F.; Griffin, P.; Metje, N.; et al. Demonstration of a Compact Magneto-Optical Trap on an Unstaffed Aerial Vehicle. Atoms 2022, 10, 32. [Google Scholar] [CrossRef]
- Lee, J.; Ding, R.; Christensen, J.; Rosenthal, R.R.; Ison, A.; Gillund, D.P.; Bossert, D.; Fuerschbach, K.H.; Kindel, W.; Finnegan, P.S.; et al. A compact cold-atom interferometer with a high data-rate grating magneto-optical trap and a photonic-integrated-circuit-compatible laser system. Nat. Commun. 2022, 13, 5131. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Liu, X.; Zhou, Y.; Xu, X.; Chen, L.; Zou, C.; Zhu, Z.; Yu, Z.; Ru, N.; Qu, J. High diffraction efficiency grating atom chip for magneto-optical trap. Opt. Commun. 2022, 513, 128087. [Google Scholar] [CrossRef]
- Huang, C.; Xu, X.; Zhang, Y.; Ma, D.; Lu, Z.; Wang, Z.; Chen, G.; Zhang, J.; Tang, H.X.; Dong, C.; et al. Planar-Integrated Magneto-Optical Trap. Phys. Rev. Appl. 2022, 17, 034031. [Google Scholar]
- Burrow, O.S.; Osborn, P.F.; Boughton, E.; Mirando, F.; Burt, D.P.; Griffin, P.F.; Arnold, A.S.; Riis, E. Stand-alone vacuum cell for compact ultracold quantum technologies. Appl. Phys. Lett. 2021, 119, 124002. [Google Scholar] [CrossRef]
- Trimeche, A.; Battelier, B.; Becker, D.; Bertoldi, A.; Bouyer, P.; Braxmaier, C.; Charron, E.; Corgier, R.; Cornelius, M.; Douch, K.; et al. Concept study and preliminary design of a cold atom interferometer for space gravity gradiometry. Class. Quant Grav 2019, 36, 215004. [Google Scholar] [CrossRef][Green Version]
- Loriani, S.; Schlippert, D.; Schubert, C.; Abend, S.; Ahlers, H.; Ertmer, W.; Rudolph, J.; Hogan, J.M.; Kasevich, M.A.; Rasel, E.M.; et al. Atomic source selection in space-borne gravitational wave detection. New J. Phys. 2019, 21, 63030. [Google Scholar] [CrossRef][Green Version]
- Nshii, C.C.; Vangeleyn, M.; Cotter, J.P.; Griffin, P.F.; Hinds, E.A.; Ironside, C.N.; See, P.; Sinclair, A.G.; Riis, E.; Arnold, A.S. A surface-patterned chip as a strong source of ultracold atoms for quantum technologies. Nat. Nanotechnol. 2013, 8, 321–324. [Google Scholar] [CrossRef][Green Version]
- Elvin, R.; Hoth, G.W.; Wright, M.; Lewis, B.; McGilligan, J.P.; Arnold, A.S.; Griffin, P.F.; Riis, E. Cold-atom clock based on a diffractive optic. Opt. Express 2019, 27, 38359. [Google Scholar] [CrossRef]
- Franssen, J.G.H.; de Raadt, T.C.H.; van Ninhuijs, M.A.W.; Luiten, O.J. Compact ultracold electron source based on a grating magneto-optical trap. Phys. Rev. Accel. Beams 2019, 22, 023401. [Google Scholar] [CrossRef][Green Version]
- Eckel, S.; Barker, D.S.; Fedchak, J.A.; Klimov, N.N.; Norrgard, E.; Scherschligt, J.; Makrides, C.; Tiesinga, E. Challenges to miniaturizing cold atom technology for deployable vacuum metrology. Metrologia 2018, 55, S182–S193. [Google Scholar] [CrossRef]
- Bondza, S.; Lisdat, C.; Kroker, S.; Leopold, T. Two-Color Grating Magneto-Optical Trap for Narrow-Line Laser Cooling. Phys. Rev. Appl. 2022, 17, 044002. [Google Scholar] [CrossRef]
- Imhof, E.; Stuhl, B.K.; Kasch, B.; Kroese, B.; Olson, S.E.; Squires, M.B. Two-dimensional grating magneto-optical trap. Phys. Rev. A 2017, 96, 033636. [Google Scholar] [CrossRef][Green Version]
- Sitaram, A.; Elgee, P.K.; Campbell, G.K.; Klimov, N.N.; Eckel, S.; Barker, D.S. Confinement of an alkaline-earth element in a grating magneto-optical trap. Rev. Sci. Instrum. 2020, 91, 103202. [Google Scholar] [CrossRef] [PubMed]
- Rushton, J.A.; Aldous, M.; Himsworth, M.D. Contributed Review: The feasibility of a fully miniaturized magneto-optical trap for portable ultracold quantum technology. Rev. Sci. Instrum. 2014, 85, 121501. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Keil, M.; Amit, O.; Zhou, S.; Groswasser, D.; Japha, Y.; Folman, R. Fifteen years of cold matter on the atom chip: Promise, realizations, and prospects. J. Mod. Opt. 2016, 63, 1840–1885. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Birkl, G.; Buchkremer, F.B.J.; Dumke, R.; Ertmer, W. Atom optics with microfabricated optical elements. Opt. Commun. 2001, 191, 67–81. [Google Scholar] [CrossRef][Green Version]
Year | Institution | Type | Results | Reference |
---|---|---|---|---|
2009 | Imperial College London Blackett Laboratory | PMOT | Pollock et al. [86,87] | |
2009 | University of Strathclyde | PMOT | atoms | Vangeleyn et al. [88] |
2013 | University of Maryland | PMOT | Lee et al. [89] | |
2017 | University of Strathclyde | GMOT | in 10 ms | McGilligan et al. [90] |
2019 | National Institute of Standards and Technology in Maryland | GMOT | atoms | Barker et al. [91] |
2021 | University of Maryland | GMOT | in 0.25s | McGehee et al. [92] |
2022 | University of Birmingham | PMOT | cold atoms | Earl et al. [93] |
2022 | Sandia National Laboratories | GMOT |
atomic | Lee et al. [94] |
2022 | China Academy of Metrology | GMOT | atoms | Duan et al. [95] |
2022 | China Academy of Metrology | GMOT | atoms | Duan et al. [96] |
Type | Advantages | Disadvantages | Use Cases |
---|---|---|---|
Six-beam MOT [44,45,46,47,48,49] | High number of cold atoms and low temperature. | Large size, complex optical path. | Scientific research institutes, schematical prototypes. |
Four-beam MOT [50,51] | Captures more atoms in less time. | Difficult beam adjustment. | Used in conjunction with a slower Zeeman coil for efficient atom trapping. |
Five-beam MOT [52,53] | Insensitive to laser beam phase fluctuations. | Low cold atom number. | Removal of the cooled atoms from the cooling beam for other studies. |
Single-beam MOT [74,75,76] | Pre-cooling of atoms, small size for dynamic measurements. | Difficult mirror surface processing. | Field dynamic measurements, used with six-beam to produce cold atomic beams. |
2D-MOT [78,79,80] | Pre-cooling of atoms. | Unsatisfactory cold atom preparation. | Used in conjunction with 3D MOTs to produce cold atomic beams. |
PMOT [85,86,87,88] | Very compact size. | Etch depth limits the number of cold atoms. | Integrated cold atom sensor. |
GMOT [93,94,95] | Large optical overlap volume, very compact size. | Low grating diffraction efficiency. | Miniaturized cold atom system. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, R.; Li, A.; Li, D.; Yan, J. Magneto-Optical Traps for Cold Atomic Gravimetry: Research Status and Development Trends. Appl. Sci. 2023, 13, 6076. https://doi.org/10.3390/app13106076
Xu R, Li A, Li D, Yan J. Magneto-Optical Traps for Cold Atomic Gravimetry: Research Status and Development Trends. Applied Sciences. 2023; 13(10):6076. https://doi.org/10.3390/app13106076
Chicago/Turabian StyleXu, Rui, An Li, Dongyi Li, and Jiujiang Yan. 2023. "Magneto-Optical Traps for Cold Atomic Gravimetry: Research Status and Development Trends" Applied Sciences 13, no. 10: 6076. https://doi.org/10.3390/app13106076
APA StyleXu, R., Li, A., Li, D., & Yan, J. (2023). Magneto-Optical Traps for Cold Atomic Gravimetry: Research Status and Development Trends. Applied Sciences, 13(10), 6076. https://doi.org/10.3390/app13106076