Identification of Aerodynamic Tonal Noise Sources of a Centrifugal Compressor of a Turbocharger for Large Stationary Engines
Abstract
:1. Introduction
2. Typical Aerodynamic Noise Characteristics of High-Speed High-Pressure Centrifugal Compressors
2.1. Rotating Blade-Related Noise
2.2. Buzz-Saw Tonal Noise
2.3. Unbalance Whistle
2.4. Tip Clearance Noise
2.5. Noise of Aerodynamic Instabilities
2.6. Aerodynamic Noise Due to Kelvin–Helmholtz Instability
2.7. Surge
3. Methods Used for Identification of Tonal Noise Sources
3.1. Tonal Metrics
3.2. Experimental Setup
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Teymourpour, S.; Mahdavi-Vala, A.; Yadegari, M.; Kia, S.; Seydi, M.; Saboohi, Z. Engineering Approach for Noise Reduction for Automotive Radiator Cooling Fan: A Case Study. SAE Tech. Pap. 2020, 1–12. [Google Scholar] [CrossRef]
- Yadegari, M.; Ommi, F.; Saboohi, Z. Synergy between Noise Reduction Techniques Applied in Different Industries: A Review. Int. J. Multiphys. 2020, 14, 161–192. [Google Scholar]
- Jansen, W. Rotating Stall in a Radial Vaneless Diffuser. Trans. ASME J. Basic Eng. 1964, 86, 750–758. [Google Scholar] [CrossRef]
- Lennemann, E.; Howard, J. Unsteady Flow Phenomena in Rotating Centrifugal Impeller Passages. J. Eng. Power 1970, 92, 65–71. [Google Scholar] [CrossRef]
- Senoo, Y.; Kinoshita, Y. Influence of Inlet Flow Conditions and Geometries of Centrifugal Vaneless Diffusers on Critical Flow Angle for Reverse Flow. Trans. ASME J. Fluids Eng. 1977, 99, 98–102. [Google Scholar] [CrossRef]
- Senoo, Y.; Kinoshita, Y. Limits of Rotating Stall and Stall in Vaneless Diffuser of Centrifugal Compressors. In Proceedings of the ASME 1978 International Gas Turbine Conference and Products Show, London, UK, 9–13 April 1978; ASME Paper No. 78-GT-19. pp. 1–12. [Google Scholar]
- Senoo, Y.; Ishida, M. Deterioration of Compressor Performance Due to Tip Clearance of Centrifugal Impellers. J. Turbomach. 1987, 109, 55–61. [Google Scholar] [CrossRef]
- Greitzer, E. Surge and Rotating Stall in Axial Flow Compressors—Part I: Theoretical Compression System Model. J. Eng. Power 1976, 98, 190–198. [Google Scholar] [CrossRef]
- Greitzer, E. Surge and Rotating Stall in Axial Flow Compressors—Part II: Experimental Results and Comparison with Theory. J. Eng. Power 1976, 98, 199–211. [Google Scholar] [CrossRef]
- Kameier, F.; Neise, W. Rotating blade flow instability as a source of noise in axial turbomachines. J. Sound Vib. 1997, 203, 833–853. [Google Scholar] [CrossRef]
- Osborn, W.; Lewis, G.; Heidelberg, L. Effect of Several Porous Casing Treatments on Stall Limit and on Overall Performance of an Axial Flow Compressor Rotor; NASA TN D-6537; NASA: Washington, DC, USA, 1971; pp. 1–50.
- Fujita, H.; Takata, H. A Study on Configurations of Casing Treatment. Bull. JSME 1984, 27, 1675–1681. [Google Scholar] [CrossRef]
- Bailey, E. Effect of Grooved Casing Treatment on the Flow Range Capability of a Single-Stage Axial-Flow Compressor; NASA TM X-2459; NASA: Washington, DC, USA, 1972; pp. 1–17.
- Evans, D.; Ward, A. Minimising Turbocharger Whoosh Noise for Diesel Powertrains. In Proceedings of the SAE 2005 Noise and Vibration Conference and Exhibition 2005, Traverse City, MI, USA, 16–19 May 2005; pp. 1–10. [Google Scholar]
- Schleer, M.; Song, S.; Abhari, R. Clearance Effects on the Onset of Instability in a Centrifugal Compressor. J. Turbomach. 2008, 130, 031002. [Google Scholar] [CrossRef]
- Semlitsch, B.; Jyothishkumar, V.; Mihaescu, M.; Fuchs, L.; Gutmark, E. Investigation of the Surge Phenomena in a Centrifugal Compressor Using Large Eddy Simulation. In Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition 2013, San Diego, CA, USA, 13–21 November 2013; pp. 1–10. [Google Scholar]
- Sun, H.; Lee, S. Numerical prediction of centrifugal compressor noise. J. Sound Vib. 2004, 269, 421–430. [Google Scholar] [CrossRef]
- Ohta, Y.; Takehara, N.; Okutsu, Y.; Outa, E. Effects of diffuser vane geometry on interaction noise generated from a centrifugal compressor. J. Therm. Sci. 2005, 14, 321–328. [Google Scholar] [CrossRef]
- Ingenito, J.; Roger, M. Measurement and Prediction of the Tonal Noise of a Centrifugal Compressor at Inlet. In Proceedings of the 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference), Miami, FL, USA, 11–13 May 2009; pp. 1–18. [Google Scholar]
- Liu, C.; Cao, Y.; Zhang, W.; Ming, P.; Liu, Y. Numerical and experimental investigations of centrifugal compressor BPF noise. Appl. Acoust. 2019, 150, 290–301. [Google Scholar] [CrossRef]
- Marsan, A.; Moreau, S. Aeroacoustic Analysis of the Tonal Noise of a Large-Scale Radial Blower. J. Fluids Eng. 2018, 140, 021103. [Google Scholar] [CrossRef]
- Zamiri, A.; Park, K.; Choi, M.; Chung, J. Transient Analysis of Flow Unsteadiness and Noise Characteristics in a Centrifugal Compressor with a Novel Vaned Diffuser. Appl. Sci. 2021, 11, 3191. [Google Scholar] [CrossRef]
- Wang, P.; Zangeneh, M.; Heyes, F.; Roach, P. Multi-objective design of a transonic turbocharger compressor with reduced noise and increased efficiency. In Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, Phoenix, AZ, USA, 17–21 June 2019; GT2019-90554. pp. 1–20. [Google Scholar]
- Mao, Y.; Fan, C.; Zhang, Z.; Song, S.; Xu, C. Control of noise generated from centrifugal refrigeration compressor. Mech. Syst. Signal Process. 2021, 152, 107466. [Google Scholar] [CrossRef]
- Torija, A.; Li, Z.; Chaitanya, P. Psychoacoustic modelling of rotor noise. J. Acoust. Soc. Am. 2022, 151, 1804–1815. [Google Scholar] [CrossRef]
- Novaković, T.; Ogris, M.; Prezelj, J. Validating impeller geometry optimization for sound quality based on psychoacoustics metrics. Appl. Acoust. 2020, 157, 107013. [Google Scholar] [CrossRef]
- Vacula, J.; Novotný, P. An Overview of Flow Instabilities Occurring in Centrifugal Compressors Operating at Low Flow Rates. J. Eng. Gas Turbines Power 2021, 143, 111002. [Google Scholar] [CrossRef]
- Raitor, T.; Neise, W. Sound generation in centrifugal compressors. J. Sound Vib. 2008, 314, 738–756. [Google Scholar] [CrossRef]
- Marshall, F.; Sorokes, J. A Review of Aerodynamically Induced Forces Acting on Centrifugal Compressors, and Resulting Vibration Characteristics Of Rotors. In Proceedings of the 29th Turbomachinery Symposium 2000, Houston, TX, USA, 18–21 September 2000; pp. 263–280. [Google Scholar]
- Sundström, E.; Semlitsch, B.; Mihăescu, M. Centrifugal Compressor: The Sound of Surge. In Proceedings of the 21st AIAA/CEAS Aeroacoustics Conference 2015, Dallas, TX, USA, 22–26 June 2015; pp. 1–17. [Google Scholar]
- Broatch, A.; Galindo, J.; Navarro, R.; García-Tíscar, J. Numerical and experimental analysis of automotive turbocharger compressor aeroacoustics at different operating conditions. Int. J. Heat Fluid Flow 2016, 61, 245–255. [Google Scholar] [CrossRef]
- Qi, M.; Zhang, M.; Ma, C. Influences of Dis-Tuned Tip Clearance on the Discrete Aerodynamic Noise in Centrifugal Compressor. In Proceedings of the International Symposium on Transport Phenomena and Dynamics of Rotating Machinery 2016, Honolulu, HI, USA, 10–15 April 2016; pp. 1–7. [Google Scholar]
- Chen, H. Noise of Turbocharger Compressors. In Proceedings of the 17th International Symposium on Transport Phe-nomena and Dynamics of Rotating Machinery ISROMAC2017, Maui, HI, USA, 16–21 December 2017; pp. 1–15. [Google Scholar]
- Alqaradawi, M.; Shahin, I.; Gadala, M.; Badr, O. Aeroacoustic Simulation for NASA CC3 Centrifugal Compressor Operating at off Design Condition. MATEC Web Conf. 2016, 70, 030047. [Google Scholar] [CrossRef]
- Zhang, Q.; Mao, Y.; Zhou, H.; Zhao, C.; Diao, Q.; Qi, D. Vibro-acoustics of a pipeline centrifugal compressor. Appl. Acoust. 2018, 132, 152–166. [Google Scholar] [CrossRef]
- McAlpine, A.; Fisher, M. On the prediction of ‘‘buzz-saw’’ noise in aero-engine inlet ducts. J. Sound Vib. 2001, 248, 123–149. [Google Scholar] [CrossRef]
- Morfey, C.; Fisher, M. Shock-wave radiation from a supersonic ducted rotor. Aeronaut. J. 1970, 74, 579–585. [Google Scholar] [CrossRef]
- Tang, X.; Li, X. Prediction of “buzz-saw” noise propagation under nonuniform axial and radial flows. AIP Adv. 2020, 10, 055004. [Google Scholar] [CrossRef]
- Sharma, S.; Broatch, A.; García-Tíscar, J.; Nickson, A.; Allport, J. Acoustic and pressure characteristics of a ported shroud turbocompressor operating at near surge conditions. Appl. Acoust. 2019, 148, 434–447. [Google Scholar] [CrossRef]
- Thisse, J.; Polacsek, C.; Léwy, S.; Lafitte, A. On the generation and propagation of multiple pure tones inside turbofans at transonic regime. In Proceedings of the 20th AIAA/CEAS Aeroacoustics Conference 2014, Atlanta, GA, USA, 16–20 June 2014; pp. 1–14. [Google Scholar]
- Toyama, K.; Runstadler, P.; Dean, R. An Experimental Study of Surge in Centrifugal Compressors. J. Fluids Eng. 1977, 99, 115–124. [Google Scholar] [CrossRef]
- Oakes, W.; Lawless, P.; Fagan, J.; Fleeter, S. High speed centrifugal compressor surge initiation characterization. J. Propuls. Power 2002, 18, 1–11. [Google Scholar] [CrossRef]
- Fink, D.; Cumpsty, N.; Greitzer, E. Surge Dynamics in a Free-Spool Centrifugal Compressor System. J. Turbomach. 1992, 114, 321–332. [Google Scholar] [CrossRef]
- Ribi, B.; Gyarmathy, G. Impeller Rotating Stall as a Trigger for the Transition from Mild to Deep Surge in a Subsonic Centrifugal Compressor. In Proceedings of the ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition, 3A, Cincinnati, OH, USA, 24–27 May 1993; pp. 1–12. [Google Scholar]
- Hong, S.; Schleer, M.; Abhari, R. Effect of Tip Clearance on the Flow and Performance of a Centrifugal Compressor. In Proceedings of the ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference 2003, Honolulu, HI, USA, 6–10 July 2003; pp. 1–7. [Google Scholar]
- Andersen, J.; Lindström, F.; Westin, F. Surge Definitions for Radial Compressors in Automotive Turbochargers. SAE Int. J. Engines 2008, 1, 218–231. [Google Scholar] [CrossRef]
- Kämmer, N.; Rautenberg, M. An Experimental Investigation of Rotating Stall Flow in a Centrifugal Compressor. In Proceedings of the ASME 1982 International Gas Turbine Conference and Exhibit, London, UK, 18–22 April 1982; Paper No: 82-GT-82 1982. Volume 1: Turbomachinery, pp. 1–9. [Google Scholar]
- Bousquet, Y.; Binder, N.; Dufour, G.; Carbonneau, X.; Trebinjac, I.; Roumeas, M. Numerical Investigation of Kelvin–Helmholtz Instability in a Centrifugal Compressor Operating Near Stall. J. Turbomach. 2016, 138, 071007. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, A. Experimental Investigation of Surge and Stall in a High-Speed Centrifugal Compressor. J. Propuls. Power 2015, 31, 1–11. [Google Scholar]
- Galindo, J.; Serrano, J.; Climent, H.; Tiseira, A. Experiments and modelling of surge in small centrifugal compressor for automotive engines. Exp. Therm. Fluid Sci. 2008, 32, 818–826. [Google Scholar] [CrossRef]
- Dehner, R.; Selamet, A.; Keller, P.; Becker, M. Simulation of Deep Surge in a Turbocharger Compression System. J. Turbomach. 2016, 138, 111002. [Google Scholar] [CrossRef]
- Teng, C.; Homco, S. Investigation of Compressor Whoosh Noise in Automotive Turbochargers. SAE Int. J. Passeng. Cars Mech. Syst. 2009, 2, 1345–1351. [Google Scholar] [CrossRef]
- Navarro, R. A Numerical Approach for Predicting Flow-Induced Acoustics at Near-Stall Conditions in an AUTOMOTIVE turbocharger Compressor. Ph.D. Thesis, Universitat Politècnica de València, Valencia, Spain, 2014. [Google Scholar]
- Japikse, D. Centrifugal Compressor Design and Performance; Concepts ETI, Inc.: Norwich, VT, USA, 1996; ISBN 0-933283-03-2. [Google Scholar]
- Bousquet, Y.; Carbonneau, X.; Dufour, G.; Binder, N.; Trebinjac, I. Analysis of the Unsteady Flow Field in a Centrifugal Compressor from Peak Efficiency to Near Stall with Full-Annulus Simulations. Int. J. Rotating Mach. 2014, 2014, 729629. [Google Scholar] [CrossRef]
- Mendonça, F.; Baris, O.; Capon, G. Simulation of Radial Compressor Aeroacoustics Using CFD. Proc. ASME Turbo Expo. 2012, 8, 1823–1832. [Google Scholar]
- Fontanesi, S.; Paltrinieri, S.; Cantore, G. CFD analysis of the acoustic behavior of a centrifugal compressor for high performance engine application. Energy Procedia 2014, 45, 759–768. [Google Scholar] [CrossRef]
- Jyothishkumar, V.; Mihaescu, M.; Semlitsch, B.; Fuchs, L. Numerical Flow Analysis in a Centrifugal Compressor near Surge Condition. In Proceedings of the 43rd Fluid Dynamics and Co-Located Conferences, San Diego, CA, USA, 24–27 June 2013; pp. 1–13. [Google Scholar]
- Sundström, E.; Semlitsch, B.; Mihaescu, M. Acoustic signature of flow instabilities in radial compressors. J. Sound Vib. 2018, 434, 221–236. [Google Scholar] [CrossRef]
- Semlitsch, B.; Mihăescu, M. Flow phenomena leading to surge in a centrifugal compressor. Energy 2016, 103, 572–587. [Google Scholar] [CrossRef]
- Fastl, H.; Zwicker, E. Psychoacoustics: Facts and Models, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 35-402-3159-5. [Google Scholar]
Quantity | Sensor Type | Measurement Range | Measurement Accuracy |
---|---|---|---|
Sound pressure | Condenser microphone | Dynamic range: 6.5 dB to 192 dB, sensitivity 12.5 mV/Pa | |
Gas temperature | Thermocouple | for 0–333 for 333–1200 , class 1, DIN EN 60584 | |
Gas pressure | Piezoresistive | % of FSO at room temperature | |
Oil temperature | Thermocouple | , class 1, DIN EN 60,584 | |
Oil pressure | Piezoresistive |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vacula, J.; Novotný, P. Identification of Aerodynamic Tonal Noise Sources of a Centrifugal Compressor of a Turbocharger for Large Stationary Engines. Appl. Sci. 2023, 13, 5964. https://doi.org/10.3390/app13105964
Vacula J, Novotný P. Identification of Aerodynamic Tonal Noise Sources of a Centrifugal Compressor of a Turbocharger for Large Stationary Engines. Applied Sciences. 2023; 13(10):5964. https://doi.org/10.3390/app13105964
Chicago/Turabian StyleVacula, Jiří, and Pavel Novotný. 2023. "Identification of Aerodynamic Tonal Noise Sources of a Centrifugal Compressor of a Turbocharger for Large Stationary Engines" Applied Sciences 13, no. 10: 5964. https://doi.org/10.3390/app13105964
APA StyleVacula, J., & Novotný, P. (2023). Identification of Aerodynamic Tonal Noise Sources of a Centrifugal Compressor of a Turbocharger for Large Stationary Engines. Applied Sciences, 13(10), 5964. https://doi.org/10.3390/app13105964