# Performance Analysis of Selected Machine Learning Techniques for Estimating Resource Requirements of Virtual Network Functions (VNFs) in Software Defined Networks

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

- A comprehensive survey has been carried out for existing ML techniques used for resource management in NFV environment.
- The experiments are carried out using a real traffic trace, to first validate the data set already published by [7].
- Based on experimental testing and related literature, we have modeled multiple linear regression and support-vector-machine-based regression model to optimally estimate the CPU consumption of different VNFs.
- Finally, we compared our adopted models with the artificial-neural-network-based approach proposed by Mestres et al. [7].

#### 1.1. SDN Model

#### 1.2. SDN-with-Knowledge Operation

#### 1.3. Research Objectives

#### 1.4. Resource Management in Network Function Virtualization

#### 1.5. Machine Learning

## 2. Problem Definition and Proposed Models

#### 2.1. Multiple Linear Regression

#### 2.2. Support Vector Machines

#### 2.3. Artificial Neural Networks

#### 2.4. Evaluation Criterion

## 3. Methodology

#### 3.1. Virtual Network Functions VNFs

#### 3.2. Traffic Preprocessing

#### 3.3. Machine Learning Training

## 4. Experimental Results

#### 4.1. Accuracy in Terms of Regression

#### 4.2. Accuracy in Terms of Error Percentage

## 5. Discussion

## 6. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Clark, D.D.; Partridge, C.; Ramming, J.C.; Wroclawski, J.T. A knowledge plane for the internet. In Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, Karlsruhe, Germany, 25–29 August 2003; pp. 3–10. [Google Scholar]
- Masoudi, R.; Ghaffari, A. Software defined networks: A survey. J. Netw. Comput. Appl.
**2016**, 67, 1–25. [Google Scholar] [CrossRef] - Kreutz, D.; Ramos, F.M.; Verissimo, P.E.; Rothenberg, C.E.; Azodolmolky, S.; Uhlig, S. Software-defined networking: A comprehensive survey. Proc. IEEE
**2014**, 103, 14–76. [Google Scholar] [CrossRef][Green Version] - Tan, L.; Su, W.; Zhang, W.; Lv, J.; Zhang, Z.; Miao, J.; Liu, X.; Li, N. In-band network telemetry: A survey. Comput. Netw.
**2021**, 186, 107763. [Google Scholar] [CrossRef] - Akyildiz, I.F.; Lee, A.; Wang, P.; Luo, M.; Chou, W. A roadmap for traffic engineering in SDN-OpenFlow networks. Comput. Netw.
**2014**, 71, 1–30. [Google Scholar] [CrossRef] - Xie, J.; Yu, F.R.; Huang, T.; Xie, R.; Liu, J.; Wang, C.; Liu, Y. A survey of machine learning techniques applied to software defined networking (SDN): Research issues and challenges. IEEE Commun. Surv. Tutor.
**2018**, 21, 393–430. [Google Scholar] [CrossRef] - Mestres, A.; Rodriguez-Natal, A.; Carner, J.; Barlet-Ros, P.; Alarcón, E.; Solé, M.; Muntés-Mulero, V.; Meyer, D.; Barkai, S.; Hibbett, M.J.; et al. Knowledge-defined networking. ACM SIGCOMM Comput. Commun. Rev.
**2017**, 47, 2–10. [Google Scholar] [CrossRef][Green Version] - Yi, B.; Wang, X.; Li, K.; Huang, M. A comprehensive survey of network function virtualization. Comput. Netw.
**2018**, 133, 212–262. [Google Scholar] [CrossRef] - RADCOM Ltd. Network Analytics Probes in the NFV and SDN Era. Available online: https://radcom.com/NetworkAnalyticsProbesintheNFVandSDNEra (accessed on 8 April 2022).
- Herrera, J.G.; Botero, J.F. Resource allocation in NFV: A comprehensive survey. IEEE Trans. Netw. Serv. Manag.
**2016**, 13, 518–532. [Google Scholar] [CrossRef] - Mijumbi, R.; Hasija, S.; Davy, S.; Davy, A.; Jennings, B.; Boutaba, R. Topology-aware prediction of virtual network function resource requirements. IEEE Trans. Netw. Serv. Manag.
**2017**, 14, 106–120. [Google Scholar] [CrossRef] - Mijumbi, R.; Serrat, J.; Gorricho, J.L.; Latre, S.; Charalambides, M.; Lopez, D. Management and orchestration challenges in network functions virtualization. IEEE Commun. Mag.
**2016**, 54, 98–105. [Google Scholar] [CrossRef] - Han, B.; Gopalakrishnan, V.; Ji, L.; Lee, S. Network function virtualization: Challenges and opportunities for innovations. IEEE Commun. Mag.
**2015**, 53, 90–97. [Google Scholar] [CrossRef] - Kumpati, S.N.; Kannan, P. Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Netw.
**1990**, 1, 4–27. [Google Scholar] - Derbel, H.; Agoulmine, N.; Salaün, M. ANEMA: Autonomic network management architecture to support self-configuration and self-optimization in IP networks. Comput. Netw.
**2009**, 53, 418–430. [Google Scholar] [CrossRef] - Zorzi, M.; Zanella, A.; Testolin, A.; De Grazia, M.D.F.; Zorzi, M. COBANETS: A new paradigm for cognitive communications systems. In Proceedings of the 2016 International Conference on Computing, Networking and Communications (ICNC), Kauai, HI, USA, 15–18 February 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–7. [Google Scholar]
- Boutaba, R.; Salahuddin, M.A.; Limam, N.; Ayoubi, S.; Shahriar, N.; Estrada-Solano, F.; Caicedo, O.M. A comprehensive survey on machine learning for networking: Evolution, applications and research opportunities. J. Internet Serv. Appl.
**2018**, 9, 16. [Google Scholar] [CrossRef][Green Version] - Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Dalaipi, F.; Yayilgan, S.I.; Gebremedhin, A. Data-Driven Machine-Learning Model in District Heating System for Heat Load Prediction: A Comparison Study. Appl. Comput. Intell. Soft Comput.
**2016**, 2016, 3403150. [Google Scholar] [CrossRef][Green Version] - Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-art in artificial neural network applications: A survey. Heliyon
**2018**, 4, e00938. [Google Scholar] [CrossRef] [PubMed][Green Version] - Kara, Y.; Boyacioglu, M.A.; Baykan, Ö.K. Predicting direction of stock price index movement using artificial neural networks and support vector machines: The sample of the Istanbul Stock Exchange. Expert Syst. Appl.
**2011**, 38, 5311–5319. [Google Scholar] [CrossRef] - Koschwitz, D.; Frisch, J.; Van Treeck, C. Data-driven heating and cooling load predictions for non-residential buildings based on support vector machine regression and NARX Recurrent Neural Network: A comparative study on district scale. Energy
**2018**, 165, 134–142. [Google Scholar] [CrossRef] - KDN Database. Available online: http://knowledgedefinednetworking.org/ (accessed on 8 April 2022).
- Pfaff, B.; Pettit, J.; Koponen, T.; Jackson, E.; Zhou, A.; Rajahalme, J.; Gross, J.; Wang, A.; Stringer, J.; Shelar, P.; et al. The Design and Implementation of Open {vSwitch}. In Proceedings of the 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI 15), Oakland, CA, USA, 4–6 May 2015; pp. 117–130. [Google Scholar]
- Liu, G.; Ramakrishnan, K.; Schlansker, M.; Tourrilhes, J.; Wood, T. Design challenges for high performance, scalable nfv interconnects. In Proceedings of the Workshop on Kernel-Bypass Networks, Los Angeles, CA, USA, 21 August 2017; pp. 49–54. [Google Scholar]
- Roesch, M. Snort: Lightweight intrusion detection for networks. In Proceedings of the 13th Conference on Systems Administration (LISA-99), Seattle, WA, USA, 7–12 November 1999; Volume 99, pp. 229–238. [Google Scholar]
- SolarWinds. Available online: https://documentation.solarwinds.com/en/success_center/vman/content/vman_administrator_guide.htm (accessed on 20 April 2022).

Framework | $\mathbf{Firewall}\text{}\mathbf{Coefficient}\text{}\mathit{R}$ | $\mathbf{OVS}\text{}\mathbf{Coefficient}\text{}\mathit{R}$ | $\mathbf{Snort}\text{}\mathbf{Coefficient}\text{}\mathit{R}$ |
---|---|---|---|

MLR | 0.97259 | 0.94898 | 0.94991 |

SVR | 0.99697 | 0.99629 | 0.99577 |

FNN | 0.80096 | 0.92623 | 0.92819 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Faheem, S.M.; Babar, M.I.; Khalil, R.A.; Saeed, N.
Performance Analysis of Selected Machine Learning Techniques for Estimating Resource Requirements of Virtual Network Functions (VNFs) in Software Defined Networks. *Appl. Sci.* **2022**, *12*, 4576.
https://doi.org/10.3390/app12094576

**AMA Style**

Faheem SM, Babar MI, Khalil RA, Saeed N.
Performance Analysis of Selected Machine Learning Techniques for Estimating Resource Requirements of Virtual Network Functions (VNFs) in Software Defined Networks. *Applied Sciences*. 2022; 12(9):4576.
https://doi.org/10.3390/app12094576

**Chicago/Turabian Style**

Faheem, Sahibzada Muhammad, Mohammad Inayatullah Babar, Ruhul Amin Khalil, and Nagham Saeed.
2022. "Performance Analysis of Selected Machine Learning Techniques for Estimating Resource Requirements of Virtual Network Functions (VNFs) in Software Defined Networks" *Applied Sciences* 12, no. 9: 4576.
https://doi.org/10.3390/app12094576