Applying Taguchi Methodology to Optimize the Brain Image Quality of 128-Sliced CT: A Feasibility Study
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. The 128-Slice CT
2.2. Slit Gauge
2.3. Orthogonal Arrays
2.4. Analysis of Variance (ANOVA)
2.5. F-Test and t-Test
2.6. Grading the Gauge and Verification
3. Results
3.1. Data Analysis
3.2. Analysis of Variance: ANOVA
3.3. Cross-Interactions of Operating Parameters in Brain CT
3.4. Confirming Brain CT Experiments
3.5. Clinical Verification with ACR Phantom
4. Conclusions
Author Contributions
Funding
Institutional Consent Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cause of Death Statistics at Taiwan in 2020. Available online: https://www.mohw.gov.tw/cp-5256-63399-2.html (accessed on 28 March 2022).
- Lin, H.C.; Lai, T.J.; Tseng, H.C.; Wang, C.H.; Tseng, Y.L.; Chen, C.Y. Radiation doses with various body weights of phantom in brain 128-slice MDCT Examination. J. Radiat. Res. 2019, 60, 466–475. [Google Scholar] [CrossRef] [PubMed]
- Alsufayan, M.; Sulieman, A.; Moslem, R.; Asiri, A.; Alomary, A.; Alanazi, B.M.; Aldossari, H.; Alonazi, B.; Bradley, D.A. Assessment of Imaging Protocol and Patients Radiation Exposure in Computed Tomography Colonography. Appl. Sci. 2021, 11, 4761. [Google Scholar] [CrossRef]
- Qurashi, A.A.; Rainford, L.A.; Alhazmi, F.H.; Alshamrani, K.M.; Sulieman, A.; Alsharif, W.M.; Alshoabi, S.A.; Gameraddin, M.B.; Aloufi, K.M.; Aldahery, S.T.; et al. Low Radiation Dose Implications in Obese Abdominal Computed Tomography Imaging. Appl. Sci. 2021, 11, 2456. [Google Scholar] [CrossRef]
- Albano, D.; Loria, A.; Fanciullo, C.; Bruno, A.; Messina, C.; Vecchio, A.; Sconfienza, L.M. Diagnostic Performance and Radiation Dose of the EOS System to Image Enchondromatosis: A Phantom Study. Appl. Sci. 2020, 10, 8941. [Google Scholar] [CrossRef]
- Pan, L.F.; Chang, M.H.; Jong, G.P.; Pan, L.K. Optimization of the Spider View in Coronary Angiography Using Taguchi Method: A Phantom study with Clinical Confirmation. Int. J. Cardiovasc. Imaging 2017, 33, 1287–1295. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Pan, L.F.; Chiang, F.T.; Yeh, D.M.; Pan, L.K. Optimizing quality of digital mammographic imaging using Taguchi analysis with an ACR accreditation phantom. Bioengineered 2016, 7, 226–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, L.F.; Erdene, E.; Chen, C.C.; Pan, L.K. Optimization of the Imaging Quality of 64-Slice CT Acquisition Protocol Using Taguchi Analysis: A Phantom Study. Biomed. Mater. Eng. 2015, 26, 1651–1658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, J.H.; Choi, S.P.; Wee, J.H.; Park, J.H. Inter-scanner variability in Hounsfield unit measured by CT of the brain and effect on gray-to-white matter ratio. Am. J. Emerg. Med. 2019, 37, 680–684. [Google Scholar] [CrossRef] [PubMed]
- Yunker, B.E.; Cordes, D.; Scherzinger, A.L.; Dodd, G.D.; Shandas, R.; Feng, Y.; Hunter, K.S. An investigation of industrial molding compounds for use in 3D ultrasound, MRI, and CT imaging phantoms. Med. Phys. 2013, 40, 052905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brisse, H.J.; Brenot, J.; Pierrat, N.; Gaboriaud, G.; Savignoni, A.; Rycke, T.D.; Neuenschwander, S.; Aubert, B.; Rosenwald, J. The relevance of image quality indices for dose optimization in abdominal multi-detector row CT in children: Experimental assessment with pediatric phantoms. Phys. Med. Biol. 2009, 54, 1871–1892. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.; Henry, R.W.; Bouley, D.M.; Bennett, N.R.; Fahrig, R. Characterization of a novel anthropomorphic palatinate lung phantom. Med. Phys. 2008, 35, 5934–5943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daisne, J.F.; Sibomana, M.; Bol, A.; Cosnard, G.; Lonneux, M.; Grégoire, V. Evaluation of a multimodality image (CT, MRI and PET) coregistration procedure on phantom and head and neck cancer patients: Accuracy, reproducibility and consistency. Radiother. Oncol. 2003, 69, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, G. Introduction to Quality Engineering: Designing Quality into Products and Processes; Asian Productivity Organization: Tokyo, Japan, 1990. [Google Scholar]
- Tseng, H.C.; Liu, W.S.; Huang, H.S.; Lai, W.H.; Changlai, S.P.; Chen, C.Y. Spatial distributions of environmenral radiations at medical linac undergoing treatment of VMAT using Taguchi method. J. Radioanal. Nucl. Chem. 2016, 307, 1635–1639. [Google Scholar] [CrossRef]
- Chen, C.Y.; Liu, K.C.; Chen, H.H.; Pan, L.K. Optimizing the TLD-100 readout system for various radiotherapy beam doses using the Taguchi methodology. Appl. Radiat. Isot. 2010, 68, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.K.; Wu, J.; Cheng, K.Y.; Pan, L.K. Optimization of imaging parameters for SPECT scans of [99mTc]TRODAT-1 using Taguchi analysis. PLoS ONE 2015, e0113817. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Kumar, K.; Bhowmik, S. Optimization of mechanical properties of epoxy based wood dust reinforced green composite using Taguchi method. Proc. Mater. Sci. 2014, 5, 688–696. [Google Scholar] [CrossRef] [Green Version]
- Fisher, R.A. Design and Analysis of Experiments; Olive and Boyd: London, UK, 1925. [Google Scholar]
- McCollough, C.H.; Bruesewitz, M.R.; McNitt-Gray, M.F.; Bush, K.; Ruckdeschel, T.; Payne, J.T.; Brink, J.A.; Zeman, R.K. The phantom portion of the American College of Radiology (ACR) computed tomography (CT) accreditation program: Practical tips, artifact examples, and pitfalls to avoid. Med. Phys. 2004, 31, 2423–2442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Commission on Radiological Protection (ICRP). Recommendations of the International Commission on Radiological Protection; ICRP 60 Report; Pergamon Press: Oxford, UK, 1991. [Google Scholar]
- Yeh, D.M.; Tsai, H.Y.; Tyan, Y.S.; Chang, Y.C.; Pan, L.K.; Chen, T.R. The Population Effective Dose of Medical Computed Tomography Examinations in Taiwan for 2013. PLoS ONE 2016, 11, e0165526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | Symbol | Level 1 | Level 2 | Level 3 |
---|---|---|---|---|
Slice thickness (mm) | A | 2.5 | 5 | ------ |
Milliamperage-seconds (mAs) | B | 300 | 350 | 400 |
Current voltage (kVp) | C | 80 | 120 | 140 |
Filter type | D | Sharp | Standard | Smooth |
Field of View (mm2) | E | 200 | 250 | 300 |
Experiment | Parameter | ||||
---|---|---|---|---|---|
Thickness | mAs | kVp | Filter | FOV | |
1 | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 1 | 2 | 2 | 2 |
3 | 1 | 1 | 3 | 3 | 3 |
4 | 1 | 2 | 1 | 1 | 2 |
5 | 1 | 2 | 2 | 2 | 3 |
6 | 1 | 2 | 3 | 3 | 1 |
7 | 1 | 3 | 1 | 2 | 1 |
8 | 1 | 3 | 2 | 3 | 2 |
9 | 1 | 3 | 3 | 1 | 3 |
10 | 2 | 1 | 1 | 3 | 3 |
11 | 2 | 1 | 2 | 1 | 1 |
12 | 2 | 1 | 3 | 2 | 2 |
13 | 2 | 2 | 1 | 2 | 3 |
14 | 2 | 2 | 2 | 3 | 1 |
15 | 2 | 2 | 3 | 1 | 2 |
16 | 2 | 3 | 1 | 3 | 2 |
17 | 2 | 3 | 2 | 1 | 3 |
18 | 2 | 3 | 3 | 2 | 1 |
Experiment | Radiologist 1 | Radiologists 2 | Radiologist 3 | Ave. | SD. | S/N * | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Score 1 | Score 2 | Score 3 | Score 1 | Score 2 | Score 3 | Score 1 | Score 2 | Score 3 | ||||
1 | 47 | 36 | 42 | 52 | 47 | 49 | 46 | 43 | 43 | 45.00 | 4.60 | 33.06 |
2 | 49 | 48 | 51 | 56 | 52 | 53 | 55 | 51 | 52 | 51.90 | 2.60 | 34.30 |
3 | 46 | 45 | 47 | 47 | 44 | 45 | 50 | 48 | 47 | 46.60 | 1.80 | 33.36 |
4 | 46 | 39 | 44 | 45 | 44 | 47 | 46 | 46 | 44 | 44.60 | 2.40 | 32.98 |
5 | 49 | 43 | 46 | 46 | 46 | 44 | 55 | 54 | 51 | 48.20 | 4.30 | 33.66 |
6 ** | 56 | 56 | 55 | 57 | 56 | 57 | 54 | 55 | 54 | 55.56 | 1.13 | 34.89 |
7 | 45 | 41 | 45 | 53 | 52 | 50 | 46 | 47 | 47 | 47.30 | 3.80 | 33.50 |
8 | 52 | 49 | 47 | 50 | 49 | 50 | 52 | 51 | 51 | 50.10 | 1.60 | 34.00 |
9 | 52 | 48 | 45 | 50 | 43 | 46 | 55 | 56 | 55 | 50.00 | 4.80 | 33.98 |
10 | 10 | 3 | 2 | 23 | 14 | 16 | 19 | 19 | 20 | 14.00 | 7.50 | 22.92 |
11 | 43 | 43 | 45 | 57 | 48 | 51 | 52 | 51 | 48 | 48.70 | 4.60 | 33.74 |
12 | 39 | 40 | 45 | 49 | 44 | 46 | 49 | 48 | 47 | 45.20 | 3.70 | 33.11 |
13 | 10 | 6 | 10 | 25 | 19 | 22 | 31 | 29 | 30 | 20.20 | 9.50 | 26.12 |
14 | 37 | 38 | 42 | 52 | 40 | 51 | 47 | 48 | 47 | 44.70 | 5.60 | 33.00 |
15 | 42 | 45 | 45 | 51 | 45 | 48 | 51 | 51 | 50 | 47.60 | 3.40 | 33.54 |
16 | 10 | 11 | 7 | 24 | 24 | 24 | 30 | 33 | 31 | 21.60 | 9.80 | 26.67 |
17 | 41 | 39 | 40 | 38 | 35 | 41 | 49 | 49 | 48 | 42.20 | 5.20 | 32.51 |
18 | 44 | 44 | 48 | 51 | 51 | 52 | 50 | 50 | 49 | 48.80 | 2.90 | 33.76 |
Ave. | 42.90 | 4.43 | 32.20 |
Parameter | SSx 1 | DoF | Varx 2 | F | Contribution (%) | Confidence Level (%) 3 | Significance |
---|---|---|---|---|---|---|---|
Thickness | 5653.39 | 1 | 5653.39 | 224.97 | 23.12 | 100.00 | Yes |
mAs | 82.46 | 2 | 41.23 | 1.64 | 0.34 | 80.25 | No |
kVp | 9466.46 | 2 | 4733.23 | 188.35 | 38.71 | 100.00 | Yes |
Filter | 1598.01 | 2 | 799.01 | 31.80 | 6.53 | 100.00 | Yes |
FOV | 3575.64 | 2 | 1787.82 | 71.14 | 14.6 | 100.00 | Yes |
Others | 462.59 | 8 | 57.82 | 2.30 | 1.89 | 97.62 | No |
Error | 3618.67 | 144 | 25.13 | ||||
Total | 24,457.22 | 161 |
Parameter | Routine | Taguchi | Optimal |
---|---|---|---|
Thickness (mm) | 5 | 2.5 | 2.5 |
mAs | 350 | 400 | 350 |
kVp | 120 | 140 | 140 |
Filter | Standard | Sharp | Smooth |
FOV (mm2) | 250 | 200 | 200 |
S/N | 33.13 | 35.03 | 34.89 |
p-value | <0.0011 | <0.0012 | Not significant3 |
CTDIvol | 60.1 | 100.5 | 75.5 |
E (mSv) | 2.01 | 3.34 | 2.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tseng, H.-C.; Lin, H.-C.; Tsai, Y.-C.; Lin, C.-H.; Changlai, S.-P.; Lee, Y.-C.; Chen, C.-Y. Applying Taguchi Methodology to Optimize the Brain Image Quality of 128-Sliced CT: A Feasibility Study. Appl. Sci. 2022, 12, 4378. https://doi.org/10.3390/app12094378
Tseng H-C, Lin H-C, Tsai Y-C, Lin C-H, Changlai S-P, Lee Y-C, Chen C-Y. Applying Taguchi Methodology to Optimize the Brain Image Quality of 128-Sliced CT: A Feasibility Study. Applied Sciences. 2022; 12(9):4378. https://doi.org/10.3390/app12094378
Chicago/Turabian StyleTseng, Hsien-Chun, Hung-Chih Lin, Yu-Che Tsai, Cheng-Hsun Lin, Sheng-Pin Changlai, Yueh-Chun Lee, and Chien-Yi Chen. 2022. "Applying Taguchi Methodology to Optimize the Brain Image Quality of 128-Sliced CT: A Feasibility Study" Applied Sciences 12, no. 9: 4378. https://doi.org/10.3390/app12094378
APA StyleTseng, H.-C., Lin, H.-C., Tsai, Y.-C., Lin, C.-H., Changlai, S.-P., Lee, Y.-C., & Chen, C.-Y. (2022). Applying Taguchi Methodology to Optimize the Brain Image Quality of 128-Sliced CT: A Feasibility Study. Applied Sciences, 12(9), 4378. https://doi.org/10.3390/app12094378