Electrospun Nanofibers for Integrated Sensing, Storage, and Computing Applications
Abstract
:1. Introduction
2. Different Types of Electrospun Nanofiber Process and Structures
2.1. Porous Nanofibers by Pretreatment
2.2. Hollow Nanofibers by Coaxial Spinneret
2.3. Aligned Nanofibers by Special Collectors
2.4. Parameters Affecting Electrospinning
3. Electrospun Nanofibers in Transistors: Computation and Multifunctional Electronics
3.1. Nanofiber Materials and Transistor Performance
3.2. Advanced Electrospinning Methods for Transistor Production
3.3. Typical Applications of Nanofiber-Based Transistors
4. Applications of Electrospinning in Memory: Storage Electronics
5. Applications of Electrospinning in Sensors: Various Sensing Electronics
6. Artificial Synapses and Other Electronic Devices Prepared by Electrospinning
7. Conclusions and Future Insights
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, C.; Chen, M.; Li, S.; Zhang, X.; Hua, C.; Bai, H.; Xiao, C.; Yang, S.A.; He, P.; Xu, Z.; et al. Coexistence of Ferroelectricity and Ferromagnetism in One-Dimensional SbN and BiN Nanowires. ACS Appl. Mater. Interfaces 2021, 13, 13517–13523. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Dietrich, S.; Forsythe, C.; Taniguchi, T.; Watanabe, K.; Moon, P.; Dean, C.R. Anisotropic Band Flattening in Graphene with One-Dimensional Superlattices. Nat. Nanotechnol. 2021, 16, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Liu, S.; Zhang, H.; Jiao, S.; Xu, Y.; Wang, Z.; Li, X.; Wang, L.; Wang, H. Engineering One-Dimensional AuPd Nanospikes for Efficient Electrocatalytic Nitrogen Fixation. ACS Appl. Mater. Interfaces 2021, 13, 20233–20239. [Google Scholar] [CrossRef]
- Tong, Z.; Liao, Z.; Liu, Y.; Ma, M.; Bi, Y.; Huang, W.; Ma, Y.; Qiao, M.; Wu, G. Hierarchical Fe3O4/Fe@C@MoS2 Core-Shell Nanofibers for Efficient Microwave Absorption. Carbon 2021, 179, 646–654. [Google Scholar] [CrossRef]
- Bai, Y.; Zhou, L.; Wang, J.; Wu, W.; McGilly, L.J.; Halbertal, D.; Lo, C.F.B.; Liu, F.; Ardelean, J.; Rivera, P.; et al. Excitons in Strain-Induced One-Dimensional Moiré Potentials at Transition Metal Dichalcogenide Heterojunctions. Nat. Mater. 2020, 19, 1068–1073. [Google Scholar] [CrossRef]
- Luzio, A.; Canesi, E.; Bertarelli, C.; Caironi, M. Electrospun Polymer Fibers for Electronic Applications. Materials 2014, 7, 906–947. [Google Scholar] [CrossRef] [PubMed]
- Formhals, A. Method and Apparatus for Spinning. U.S. Patent No. 2160962, 6 June 1939. [Google Scholar]
- Doshi, J.; Reneker, D.H. Electrospinning Process and Applications of Electrospun Fibers. In Proceedings of the Conference Record of the 1993 IEEE Industry Applications Conference Twenty-Eighth IAS Annual Meeting, Toronto, ON, Canada, 2–8 October 1993; IEEE: Piscataway, NJ, USA; pp. 1698–1703. [Google Scholar]
- Xue, J.; Xie, J.; Liu, W.; Xia, Y. Electrospun Nanofibers: New Concepts, Materials, and Applications. Acc. Chem. Res. 2017, 50, 1976–1987. [Google Scholar] [CrossRef]
- Rahmati, M.; Mills, D.K.; Urbanska, A.M.; Saeb, M.R.; Venugopal, J.R.; Ramakrishna, S.; Mozafari, M. Electrospinning for Tissue Engineering Applications. Prog. Mater. Sci. 2021, 117, 100721. [Google Scholar] [CrossRef]
- Luraghi, A.; Peri, F.; Moroni, L. Electrospinning for Drug Delivery Applications: A Review. J. Control. Release 2021, 334, 463–484. [Google Scholar] [CrossRef]
- Movahedi, M.; Asefnejad, A.; Rafienia, M.; Khorasani, M.T. Potential of Novel Electrospun Core-Shell Structured Polyurethane/Starch (Hyaluronic Acid) Nanofibers for Skin Tissue Engineering: In Vitro and In Vivo Evaluation. Int. J. Biol. Macromol. 2020, 146, 627–637. [Google Scholar] [CrossRef]
- Wang, Z.; Meng, Y.; Cui, Y.; Fan, C.; Liu, G.; Shin, B.; Feng, D.; Shan, F. Low-Voltage and High-Performance Field-Effect Transistors Based on ZnxSn1 − xO Nanofibers with a ZrOx Dielectric. Nanoscale 2018, 10, 14712–14718. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Cui, J.; Qu, Q.; Wang, Y.; Zhang, J.; Xiong, R.; Ma, W.; Huang, C. Multistructured Electrospun Nanofibers for Air Filtration: A Review. ACS Appl. Mater. Interfaces 2021, 13, 23293–23313. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhang, X.; Qin, Z.; Li, H.; Wang, J.; Zeng, G.; Liu, C.; Long, J.; Zhao, Y.; Li, Y.; et al. Airflow Synergistic Needleless Electrospinning of Instant Noodle-like Curly Nanofibrous Membranes for High-Efficiency Air Filtration. Small 2022, 18, 2107250. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Yu, H.-Y.; Jiang, C.; Zhang, T.-H.; Zhan, R.; Li, X.; Li, J.-F.; Tian, J.-H.; Yang, R. NiCo Alloy Nanoparticles Decorated on N-Doped Carbon Nanofibers as Highly Active and Durable Oxygen Electrocatalyst. Adv. Funct. Mater. 2018, 28, 1705094. [Google Scholar] [CrossRef]
- He, Y.; Guo, H.; Hwang, S.; Yang, X.; He, Z.; Braaten, J.; Karakalos, S.; Shan, W.; Wang, M.; Zhou, H.; et al. Single Cobalt Sites Dispersed in Hierarchically Porous Nanofiber Networks for Durable and High-Power PGM-Free Cathodes in Fuel Cells. Adv. Mater. 2020, 32, 2003577. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Nie, L. Progress in Fabrication of One-Dimensional Catalytic Materials by Electrospinning Technology. J. Ind. Eng. Chem. 2021, 93, 28–56. [Google Scholar] [CrossRef]
- Li, X.; Chen, W.; Qian, Q.; Huang, H.; Chen, Y.; Wang, Z.; Chen, Q.; Yang, J.; Li, J.; Mai, Y.-W. Electrospinning-Based Strategies for Battery Materials. Adv. Energy Mater. 2021, 11, 2000845. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Silva, S.R.P.; Ding, B.; Zhang, P.; Shao, G. Lithium–Sulfur Batteries Meet Electrospinning: Recent Advances and the Key Parameters for High Gravimetric and Volume Energy Density. Adv. Sci. 2022, 9, 2103879. [Google Scholar] [CrossRef]
- Dziemidowicz, K.; Sang, Q.; Wu, J.; Zhang, Z.; Zhou, F.; Lagaron, J.M.; Mo, X.; Parker, G.J.M.; Yu, D.-G.; Zhu, L.-M.; et al. Electrospinning for Healthcare: Recent Advancements. J. Mater. Chem. B 2021, 9, 939–951. [Google Scholar] [CrossRef]
- Praveen, S.; Veeralingam, S.; Badhulika, S. A Flexible Self-Powered UV Photodetector and Optical UV Filter Based on β-Bi2O3/SnO2 Quantum Dots Schottky Heterojunction. Adv. Mater. Interfaces 2021, 8, 2100373. [Google Scholar] [CrossRef]
- Jun, L.; Chen, Q.; Fu, W.; Yang, Y.; Zhu, W.; Zhang, J. Electrospun Yb-Doped In2O3 Nanofiber Field-Effect Transistors for Highly Sensitive Ethanol Sensors. ACS Appl. Mater. Interfaces 2020, 12, 38425–38434. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-H.; Bae, J.; Lee, J.; Ahn, J.; Hwang, W.-T.; Ko, J.; Kim, I.-D. Porous Nanofiber Membrane: Rational Platform for Highly Sensitive Thermochromic Sensor. Adv. Funct. Mater. 2022, 2200463. [Google Scholar] [CrossRef]
- Balamurugan, R.; Sundarrajan, S.; Ramakrishna, S. Recent Trends in Nanofibrous Membranes and Their Suitability for Air and Water Filtrations. Membranes 2011, 1, 232–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fadil, F.; Affandi, N.D.N.; Misnon, M.I.; Bonnia, N.N.; Harun, A.M.; Alam, M.K. Review on Electrospun Nanofiber-Applied Products. Polymers 2021, 13, 2087. [Google Scholar] [CrossRef]
- Liao, Y.; Loh, C.-H.; Tian, M.; Wang, R.; Fane, A.G. Progress in Electrospun Polymeric Nanofibrous Membranes for Water Treatment: Fabrication, Modification and Applications. Prog. Polym. Sci. 2018, 77, 69–94. [Google Scholar] [CrossRef]
- Qiao, J.; Zhang, X.; Xu, D.; Kong, L.; Lv, L.; Yang, F.; Wang, F.; Liu, W.; Liu, J. Design and Synthesis of TiO2/Co/Carbon Nanofibers with Tunable and Efficient Electromagnetic Absorption. Chem. Eng. J. 2020, 380, 122591. [Google Scholar] [CrossRef]
- Gao, S.; Wang, N.; Li, S.; Li, D.; Cui, Z.; Yue, G.; Liu, J.; Zhao, X.; Jiang, L.; Zhao, Y. A Multi-Wall Sn/SnO2@Carbon Hollow Nanofiber Anode Material for High-Rate and Long-Life Lithium-Ion Batteries. Angew. Chem. Int. Ed. 2020, 59, 2465–2472. [Google Scholar] [CrossRef]
- Du, H.; Yang, W.; Yi, W.; Sun, Y.; Yu, N.; Wang, J. Oxygen-Plasma-Assisted Enhanced Acetone-Sensing Properties of ZnO Nanofibers by Electrospinning. ACS Appl. Mater. Interfaces 2020, 12, 23084–23093. [Google Scholar] [CrossRef]
- Hu, Q.; Huang, B.; Li, Y.; Zhang, S.; Zhang, Y.; Hua, X.; Liu, G.; Li, B.; Zhou, J.; Xie, E.; et al. Methanol Gas Detection of Electrospun CeO2 Nanofibers by Regulating Ce3+/Ce4+ Mole Ratio via Pd Doping. Sens. Actuators B Chem. 2020, 307, 127638. [Google Scholar] [CrossRef]
- Li, Z.; Meng, Y.; Wang, C.; Cui, Y.; Yao, Z.; Shin, B.; Liu, G.; Shan, F. Enhancement-Mode Field-Effect Transistors Based on Ti-Doped In2O3 Nanowires Fabricated by Electrospinning. J. Phys. D Appl. Phys. 2019, 52, 225102. [Google Scholar] [CrossRef]
- Dai, X.; Li, X.; Wang, X. Morphology Controlled Porous Poly(Lactic Acid)/Zeolitic Imidazolate Framework-8 Fibrous Membranes with Superior PM2.5 Capture Capacity. Chem. Eng. J. 2018, 338, 82–91. [Google Scholar] [CrossRef]
- McCann, J.T.; Marquez, M.; Xia, Y. Highly Porous Fibers by Electrospinning into a Cryogenic Liquid. J. Am. Chem. Soc. 2006, 128, 1436–1437. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Steckl, A.J. Coaxial Electrospinning Formation of Complex Polymer Fibers and Their Applications. ChemPlusChem 2019, 84, 1453–1497. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Huang, C.; Ke, Q.; He, C.; Wang, H.; Mo, X. Preparation and Characterization of Coaxial Electrospun Thermoplastic Polyurethane/Collagen Compound Nanofibers for Tissue Engineering Applications. Colloids Surf. B Biointerfaces 2010, 79, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Ge, K.; Chen, Y.; Qi, S.; Qiu, J.; Liu, Q. Cable-Like Core–Shell Mesoporous SnO2 Nanofibers by Single-Nozzle Electrospinning Phase Separation for Formaldehyde Sensing. Chem. A Eur. J. 2020, 26, 9365–9370. [Google Scholar] [CrossRef]
- Mendoza-Diaz, M.I.; Garcia-Gutierrez, D.F.; Sepulveda-Guzman, S.; Moreno-Cortez, I.E.; Garcia-Gutierrez, D.I. Tuning the Optoelectronic Properties of PEDOT:PSS-PVP Core–Shell Electrospun Nanofibers by Solvent-Quantum Dot Doping and Phase Inversion. Nanotechnology 2019, 30, 395601. [Google Scholar] [CrossRef]
- Lee, M.Y.; Oh, Y.; Hong, J.; Lee, S.J.; Seong, D.G.; Um, M.-K.; Oh, J.H. Fabrication of Stretchable and Transparent Core–Shell Polymeric Nanofibers Using Coaxial Electrospinning and Their Application to Phototransistors. Adv. Electron. Mater. 2021, 7, 2001000. [Google Scholar] [CrossRef]
- Yan, E.; Jiang, J.; Yang, X.; Fan, L.; Wang, Y.; An, Q.; Zhang, Z.; Lu, B.; Wang, D.; Zhang, D. PH-Sensitive Core-Shell Electrospun Nanofibers Based on Polyvinyl Alcohol/Polycaprolactone as a Potential Drug Delivery System for the Chemotherapy against Cervical Cancer. J. Drug Deliv. Sci. Technol. 2020, 55, 101455. [Google Scholar] [CrossRef]
- Sarvi, A.; Chimello, V.; Silva, A.B.; Bretas, R.E.; Sundararaj, U. Coaxial Electrospun Nanofibers of Poly(Vinylidene Fluoride)/Polyaniline Filled with Multi-Walled Carbon Nanotubes. Polym. Compos. 2014, 35, 1198–1203. [Google Scholar] [CrossRef]
- Niu, H.; Wang, H.; Zhou, H.; Lin, T. Ultrafine PDMS Fibers: Preparation from in Situ Curing-Electrospinning and Mechanical Characterization. RSC Adv. 2014, 4, 11782–11787. [Google Scholar] [CrossRef]
- Duan, G.; Greiner, A. Air-Blowing-Assisted Coaxial Electrospinning toward High Productivity of Core/Sheath and Hollow Fibers. Macromol. Mater. Eng. 2019, 304, 1800669. [Google Scholar] [CrossRef]
- Zhao, Y.; Cao, X.; Jiang, L. Bio-Mimic Multichannel Microtubes by a Facile Method. J. Am. Chem. Soc. 2007, 129, 764–765. [Google Scholar] [CrossRef]
- Song, Y.; Wang, Y.; Xu, L.; Wang, M. Fabrication and Characterization of Electrospun Aligned Porous PAN/Graphene Composite Nanofibers. Nanomaterials 2019, 9, 1782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; You, X.; Tang, Z.; Tong, K.-Y.; Guo, P.; Zhao, N. Interface Engineering of Flexible Piezoresistive Sensors via Near-Field Electrospinning Processed Spacer Layers. Small Methods 2021, 5, 2000842. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Li, W.; Wang, X.; Wu, D.; Sun, D.; Lin, L. Precision Deposition of a Nanofibre by Near-Field Electrospinning. J. Phys. D Appl. Phys. 2010, 43, 415501. [Google Scholar] [CrossRef]
- Bisht, G.S.; Canton, G.; Mirsepassi, A.; Kulinsky, L.; Oh, S.; Dunn-Rankin, D.; Madou, M.J. Controlled Continuous Patterning of Polymeric Nanofibers on Three-Dimensional Substrates Using Low-Voltage Near-Field Electrospinning. Nano Lett. 2011, 11, 1831–1837. [Google Scholar] [CrossRef]
- Xin, Y.; Reneker, D.H. Hierarchical Polystyrene Patterns Produced by Electrospinning. Polymer 2012, 53, 4254–4261. [Google Scholar] [CrossRef]
- Katta, P.; Alessandro, M.; Ramsier, R.D.; Chase, G.G. Continuous Electrospinning of Aligned Polymer Nanofibers onto a Wire Drum Collector. Nano Lett. 2004, 4, 2215–2218. [Google Scholar] [CrossRef]
- Zhang, H.-D.; Tang, C.-C.; Long, Y.-Z.; Zhang, J.-C.; Huang, R.; Li, J.-J.; Gu, C.-Z. High-Sensitivity Gas Sensors Based on Arranged Polyaniline/PMMA Composite Fibers. Sens. Actuators A Phys. 2014, 219, 123–127. [Google Scholar] [CrossRef]
- Li, D.; Wang, Y.; Xia, Y. Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays. Nano Lett. 2003, 3, 1167–1171. [Google Scholar] [CrossRef]
- Bhattarai, R.S.; Bachu, R.D.; Boddu, S.H.S.; Bhaduri, S. Biomedical Applications of Electrospun Nanofibers: Drug and Nanoparticle Delivery. Pharmaceutics 2019, 11, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Topuz, F.; Abdulhamid, M.A.; Holtzl, T.; Szekely, G. Nanofiber Engineering of Microporous Polyimides through Electrospinning: Influence of Electrospinning Parameters and Salt Addition. Mater. Des. 2021, 198, 109280. [Google Scholar] [CrossRef]
- Haghi, A.K.; Akbari, M. Trends in Electrospinning of Natural Nanofibers. Phys. Status Solidi 2007, 204, 1830–1834. [Google Scholar] [CrossRef]
- Yang, Y.; Jia, Z.; Liu, J.; Li, Q.; Hou, L.; Wang, L.; Guan, Z. Effect of Electric Field Distribution Uniformity on Electrospinning. J. Appl. Phys. 2008, 103, 104307. [Google Scholar] [CrossRef]
- Zhang, H. Effects of Electrospinning Parameters on Morphology and Diameter of Electrospun PLGA/MWNTs Fibers and Cytocompatibility in Vitro. J. Bioact. Compat. Polym. 2011, 26, 590–606. [Google Scholar] [CrossRef]
- Li, Z.; Wang, C. Effects of Working Parameters on Electrospinning. In One-Dimensional Nanostructures: Electrospinning Technique and Unique Nanofibers; Li, Z., Wang, C., Eds.; Springer Briefs in Materials; Springer: Berlin/Heidelberg, Germany, 2013; pp. 15–28. ISBN 978-3-642-36427-3. [Google Scholar]
- Szewczyk, P.K.; Stachewicz, U. The Impact of Relative Humidity on Electrospun Polymer Fibers: From Structural Changes to Fiber Morphology. Adv. Colloid Interface Sci. 2020, 286, 102315. [Google Scholar] [CrossRef]
- Rodoplu, D.; Mutlu, M. Effects of Electrospinning Setup and Process Parameters on Nanofiber Morphology Intended for the Modification of Quartz Crystal Microbalance Surfaces. J. Eng. Fibers Fabr. 2012, 7, 118–123. [Google Scholar] [CrossRef] [Green Version]
- Pinto, N.J.; Johnson, A.T.; MacDiarmid, A.G.; Mueller, C.H.; Theofylaktos, N.; Robinson, D.C.; Miranda, F.A. Electrospun Polyaniline/Polyethylene Oxide Nanofiber Field-Effect Transistor. Appl. Phys. Lett. 2003, 83, 4244–4246. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Moon, G.D.; Jeong, U. Continuous Production of Uniform Poly(3-Hexylthiophene) (P3HT) Nanofibers by Electrospinning and Their Electrical Properties. J. Mater. Chem. 2009, 19, 743–748. [Google Scholar] [CrossRef]
- Lee, S.W.; Lee, H.J.; Choi, J.H.; Koh, W.G.; Myoung, J.M.; Hur, J.H.; Park, J.J.; Cho, J.H.; Jeong, U. Periodic Array of Polyelectrolyte-Gated Organic Transistors from Electrospun Poly(3-Hexylthiophene) Nanofibers. Nano Lett. 2010, 10, 347–351. [Google Scholar] [CrossRef]
- González, R.; Pinto, N.J. Electrospun Poly(3-Hexylthiophene-2,5-Diyl) Fiber Field Effect Transistor. Synth. Met. 2005, 151, 275–278. [Google Scholar] [CrossRef]
- Wang, W.; Li, Z.; Xu, X.; Dong, B.; Zhang, H.; Wang, Z.; Wang, C.; Baughman, R.H.; Fang, S. Au-Doped Polyacrylonitrile–Polyaniline Core–Shell Electrospun Nanofibers Having High Field-Effect Mobilities. Small 2011, 7, 597–600. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.Y.; Hong, J.; Lee, E.K.; Yu, H.; Kim, H.; Lee, J.U.; Lee, W.; Oh, J.H. Highly Flexible Organic Nanofiber Phototransistors Fabricated on a Textile Composite for Wearable Photosensors. Adv. Funct. Mater. 2016, 26, 1445–1453. [Google Scholar] [CrossRef]
- Wu, H.; Lin, D.; Pan, W. Fabrication, Assembly, and Electrical Characterization of CuO Nanofibers. Appl. Phys. Lett. 2006, 89, 133125. [Google Scholar] [CrossRef]
- Yoo, T.-H.; Hwang, D.K. Field Effect Transistors Based on One-Dimensional, Metal-Oxide Semiconducting Nanofiber Mats. J. Korean Phys. Soc. 2019, 74, 827–830. [Google Scholar] [CrossRef]
- Chou, C.-C.; Wu, H.-C.; Lin, C.-J.; Ghelichkhani, E.; Chen, W.-C. Morphology and Field-Effect Transistor Characteristics of Electrospun Nanofibers Prepared From Crystalline Poly(3-Hexylthiophene) and Polyacrylate Blends. Macromol. Chem. Phys. 2013, 214, 751–760. [Google Scholar] [CrossRef]
- Chen, J.-Y.; Su, C.-Y.; Hsu, C.-H.; Zhang, Y.-H.; Zhang, Q.-C.; Chang, C.-L.; Hua, C.-C.; Chen, W.-C. Solvent Effects on Morphology and Electrical Properties of Poly(3-Hexylthiophene) Electrospun Nanofibers. Polymers 2019, 11, 1501. [Google Scholar] [CrossRef] [Green Version]
- Liu, A.; Meng, Y.; Zhu, H.; Noh, Y.-Y.; Liu, G.; Shan, F. Electrospun p -Type Nickel Oxide Semiconducting Nanowires for Low-Voltage Field-Effect Transistors. ACS Appl. Mater. Interfaces 2018, 10, 25841–25849. [Google Scholar] [CrossRef]
- Zhu, X.; Li, Y.; Zhang, H.; Song, L.; Zu, H.; Qin, Y.; Liu, L.; Li, Y.; Wang, F. High-Performance Field Effect Transistors Based on Large Ratio Metal (Al, Ga, Cr) Doped In2O3 Nanofibers. J. Alloy. Compd. 2020, 830, 154578. [Google Scholar] [CrossRef]
- Zhang, H.; Meng, Y.; Song, L.; Luo, L.; Qin, Y.; Han, N.; Yang, Z.; Liu, L.; Ho, J.C.; Wang, F. High-Performance Enhancement-Mode Thin-Film Transistors Based on Mg-Doped In2O3 Nanofiber Networks. Nano Res. 2018, 11, 1227–1237. [Google Scholar] [CrossRef]
- Wang, Z.; Xin, Z.; Cui, Y.; Wang, C.; Wang, C.; Shin, B.; Liu, G.; Shan, F. The Role of Oxygen in Determining the Electrical Performance of ZnSnO Nanofiber Field-Effect Transistors. J. Phys. D Appl. Phys. 2020, 53, 015109. [Google Scholar] [CrossRef]
- He, J.; Liu, X.; Song, L.; Li, H.; Zu, H.; Li, J.; Zhang, H.; Zhang, J.; Qin, Y.; Wang, F. High Annealing Stability of InAlZnO Nanofiber Field-Effect Transistors with Improved Morphology by Al Doping. J. Phys. Chem. Lett. 2021, 12, 1339–1345. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, C.; Xin, Z.; Cui, Y.; Wang, Z.; Liu, G.; Shan, F. Low-Temperature Fabrication of Nontoxic Indium Oxide Nanofibers and Their Application in Field-Effect Transistors. IEEE Electron Device Lett. 2020, 41, 413–416. [Google Scholar] [CrossRef]
- Zu, H.; Chang, Y.; Li, H.; He, J.; Li, J.; Zhu, X.; Zhang, J.; Wang, F. Modulating the Transport Properties of Metal Oxide Nanofibers Transistors by Controlling the Grain Size. IEEE Electron Device Lett. 2021, 42, 855–858. [Google Scholar] [CrossRef]
- Wang, F.; Song, L.; Zhang, H.; Meng, Y.; Luo, L.; Xi, Y.; Liu, L.; Han, N.; Yang, Z.; Tang, J.; et al. ZnO Nanofiber Thin-Film Transistors with Low-Operating Voltages. Adv. Electron. Mater. 2018, 4, 1700336. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.-K.; Cho, W.-J. Performance Improvement in Electrospun InGaZnO Nanofibres Field-Effect-Transistors Using Low Thermal Budget Microwave Calcination and Ar/O2 Mixed-Plasma Surface Treatment. Sci. Rep. 2020, 10, 3645. [Google Scholar] [CrossRef]
- Chen, D.; Lei, S.; Chen, Y. A Single Polyaniline Nanofiber Field Effect Transistor and Its Gas Sensing Mechanisms. Sensors 2011, 11, 6509–6516. [Google Scholar] [CrossRef]
- Shmueli, Y.; Shter, G.E.; Assad, O.; Haick, H.; Sonntag, P.; Ricoux, P.; Grader, G.S. Structural and Electrical Properties of Single Ga/ZnO Nanofibers Synthesized by Electrospinning. J. Mater. Res. 2012, 27, 1672–1679. [Google Scholar] [CrossRef]
- Tu, D.; Pagliara, S.; Camposeo, A.; Persano, L.; Cingolani, R.; Pisignano, D. Single Light-Emitting Polymer Nanofiber Field-Effect Transistors. Nanoscale 2010, 2, 2217. [Google Scholar] [CrossRef]
- Kim, S.G.; Lee, J.S.; Jun, J.; Shin, D.H.; Jang, J. Ultrasensitive Bisphenol A Field-Effect Transistor Sensor Using an Aptamer-Modified Multichannel Carbon Nanofiber Transducer. ACS Appl. Mater. Interfaces 2016, 8, 6602–6610. [Google Scholar] [CrossRef]
- Liu, H.; Reccius, C.H.; Craighead, H.G. Single Electrospun Regioregular Poly(3-Hexylthiophene) Nanofiber Field-Effect Transistor. Appl. Phys. Lett. 2005, 87, 253106. [Google Scholar] [CrossRef]
- Lin, C.J.; Hsu, J.C.; Tsai, J.H.; Kuo, C.C.; Lee, W.Y.; Chen, W.C. High-Performance FETs Prepared From Electrospun Aligned P4TDPP Nanofibers. Macromol. Chem. Phys. 2011, 212, 2452–2458. [Google Scholar] [CrossRef]
- Canesi, E.V.; Luzio, A.; Saglio, B.; Bianco, A.; Caironi, M.; Bertarelli, C. N-Type Semiconducting Polymer Fibers. ACS Macro Lett. 2012, 1, 366–369. [Google Scholar] [CrossRef]
- Park, J.Y.; Kim, J.-J.; Kim, S.S. Electrical Transport Properties of ZnO Nanofibers. Microelectron. Eng. 2013, 101, 8–11. [Google Scholar] [CrossRef]
- Matsubara, K.; Huang, S.; Iwamoto, M.; Pan, W. Enhanced Conductivity and Gating Effect of P-Type Li-Doped NiO Nanowires. Nanoscale 2014, 6, 688–692. [Google Scholar] [CrossRef]
- Manuelli, A.; Persano, L.; Pisignano, D. Flexible Organic Field-Effect Transistors Based on Electrospun Conjugated Polymer Nanofibers with High Bending Stability. Org. Electron. 2014, 15, 1056–1061. [Google Scholar] [CrossRef]
- Cadafalch Gazquez, G.; Lei, S.; George, A.; Gullapalli, H.; Boukamp, B.A.; Ajayan, P.M.; ten Elshof, J.E. Low-Cost, Large-Area, Facile, and Rapid Fabrication of Aligned ZnO Nanowire Device Arrays. ACS Appl. Mater. Interfaces 2016, 8, 13466–13471. [Google Scholar] [CrossRef]
- Belyaev, M.; Putrolaynen, V.; Velichko, A.; Markova, N. Mobility-Modulation Field Effect Transistor Based on Electrospun Aluminum Doped Zinc Oxide Nanowires. ECS J. Solid State Sci. Technol. 2016, 5, Q92–Q97. [Google Scholar] [CrossRef]
- Ortiz, D.N.; Pinto, N.J. Ionic Liquid Gel Gated Electro-Spun Poly(3,4-Ethylenedioxythiophene) Doped with Poly(Styrene Sulfonic Acid) Nano-Ribbon. Thin Solid Film. 2017, 636, 737–742. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, A.; Liu, G.; Shan, F. Electrospun P-Type CuO Nanofibers for Low-Voltage Field-Effect Transistors. Appl. Phys. Lett. 2017, 111, 143501. [Google Scholar] [CrossRef]
- Shi, N.; Liu, D.; Jin, X.; Wu, W.; Zhang, J.; Yi, M.; Xie, L.; Guo, F.; Yang, L.; Ou, C.; et al. Floating-Gate Nanofibrous Electret Arrays for High Performance Nonvolatile Organic Transistor Memory Devices. Org. Electron. 2017, 49, 218–225. [Google Scholar] [CrossRef]
- Wang, C.; Meng, Y.; Guo, Z.; Shin, B.; Liu, G.; Shan, F. High-Performance Field-Effect Transistors Based on Gadolinium Doped Indium Oxide Nanofibers and Their Application in Logic Gate. Appl. Phys. Lett. 2018, 112, 213501. [Google Scholar] [CrossRef]
- Song, L.; Luo, L.; Li, X.; Liu, D.; Han, N.; Liu, L.; Qin, Y.; Ho, J.C.; Wang, F. Modulating Electrical Performances of In2O3 Nanofiber Channel Thin Film Transistors via Sr Doping. Adv. Electron. Mater. 2019, 5, 1800707. [Google Scholar] [CrossRef]
- Rosario, A.; Pinto, N.J. PEDOT-PSS Nanoribbon and Cast Film Field Effect Transistors with Ferroelectric Gating. Synth. Met. 2019, 247, 151–156. [Google Scholar] [CrossRef]
- Zhang, H.; Ye, J.; Qin, X. Facile Fabrication and Transistor Properties of Mixed Crystalline TiO2 Nanofibers FET Devices. Mater. Lett. 2019, 246, 99–102. [Google Scholar] [CrossRef]
- Fu, C.; Ding, Y.; Cui, Y.; Meng, Y.; Yao, Z.; Liu, G.; Shan, F. Self-Welding and Low-Temperature Formation of Metal Oxide Nanofiber Networks and Its Application to Electronic Devices. IEEE Electron Device Lett. 2020, 41, 62–65. [Google Scholar] [CrossRef]
- Kim, J.; Lee, W.; Choi, S.; Kim, K.-T.; Heo, J.-S.; Park, S.K.; Kim, Y.-H. Dual-Gate Crystalline Oxide-Nanowire Field-Effect Transistors Utilizing Ion-Gel Gate Dielectric. Appl. Surf. Sci. 2020, 515, 145988. [Google Scholar] [CrossRef]
- Chen, Q.; Li, J.; Fu, W.; Yang, Y.; Zhu, W.; Zhang, J. Detection of N,N-Dimethylformamide Vapor down to Ppb Level Using Electrospun InYbO Nanofibers Field-Effect Transistor. Sens. Actuators B Chem. 2020, 323, 128676. [Google Scholar] [CrossRef]
- Veeralingam, S.; Badhulika, S. Surface Functionalized β-Bi2O3 Nanofibers Based Flexible, Field-Effect Transistor-Biosensor (BioFET) for Rapid, Label-Free Detection of Serotonin in Biological Fluids. Sens. Actuators B Chem. 2020, 321, 128540. [Google Scholar] [CrossRef]
- Hong, E.-K.; Cho, W.-J. High Sensitivity In-Ga-Zn-O Nanofiber-Based Double Gate Field Effect Transistors for Chemical Sensing. Sens. Actuators B Chem. 2021, 326, 128827. [Google Scholar] [CrossRef]
- Wang, J.; Ding, Y.; Wang, Z.; Tang, Q.; Chen, Q.; Liu, G.; Shan, F. Performance Enhancement of Field-Effect Transistors Based on In₂O₃ Nanofiber Networks by Plasma Treatment. IEEE Electron Device Lett. 2021, 42, 176–179. [Google Scholar] [CrossRef]
- Xia, Y.; He, G.; Wang, W.; Gao, Q.; Liu, Y. Low-Voltage Operating Field-Effect Transistors and Inverters Based on In₂O₃ Nanofiber Networks. IEEE Trans. Electron Devices 2021, 68, 2522–2529. [Google Scholar] [CrossRef]
- Wang, L.; Wang, L.; Li, G.; Zhu, Y.; Liu, C.; Zeng, L.; Zhong, S.; Wang, L.J. Three-Dimensional CuPc Films Decorated with Well-Ordered PVA Parallel Nanofiber Arrays for Low Concentration Detecting NO2 Sensor. Sens. Actuators B Chem. 2021, 337, 129781. [Google Scholar] [CrossRef]
- Grishin, A.; Velichko, A.; Jalalian, A. Nb2O5 Nanofiber Memristor. Appl. Phys. Lett. 2013, 103, 053111. [Google Scholar] [CrossRef]
- Markova, N.P.; Grishin, A.M. Biocompatible Er:(Na,K)NbO3 Nanofibers. J. Phys. Conf. Ser. 2017, 917, 042028. [Google Scholar] [CrossRef]
- Joseph, E.; Madhusudanan, S.P.; Mohanta, K.; Karthega, M.; Batabyal, S.K. Multiple Negative Differential Resistance in Perovskite (CH3NH3PbI3) Decorated Electrospun TiO2 Nanofibers. Appl. Phys. A 2020, 126, 707. [Google Scholar] [CrossRef]
- Molinari, F.N.; Barragán, E.; Bilbao, E.; Patrone, L.; Giménez, G.; Medrano, A.V.; Tolley, A.; Monsalve, L.N. An Electrospun Polymer Composite with Fullerene-Multiwalled Carbon Nanotube Exohedral Complexes Can Act as Memory Device. Polymer 2020, 194, 122380. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.; Yoon, S.M. Resistive Memory Devices Based on Reticular Materials for Electrical Information Storage. ACS Appl. Mater. Interfaces 2021, 13, 56777–56792. [Google Scholar] [CrossRef]
- Patil, A.A.; Wagh, S.V.; Dongale, T.D.; Kim, D. Electrospun 1D F-MWCNTs-TiO2 Composite Nanofibers for Resistive Memory and Synaptic Learning Applications. Mater. Lett. 2020, 280, 128587. [Google Scholar] [CrossRef]
- Rananavare, A.P.; Kadam, S.J.; Prabhu, S.V.; Chavan, S.S.; Anbhule, P.V.; Dongale, T.D. Organic Non-Volatile Memory Device Based on Cellulose Fibers. Mater. Lett. 2018, 232, 99–102. [Google Scholar] [CrossRef]
- Chandane, P.T.; Dongale, T.D.; Patil, P.B.; Tiwari, A.P. Organic Resistive Switching Device Based on Cellulose-Gelatine Microcomposite Fibers. J. Mater. Sci. Mater. Electron. 2019, 30, 21288–21296. [Google Scholar] [CrossRef]
- Liu, H.-Y.; Hsieh, H.-C.; Chen, J.-Y.; Shih, C.-C.; Lee, W.-Y.; Chiang, Y.-C.; Chen, W.-C. Fabrication and Application of Highly Stretchable Conductive Fiber-Based Electrode of Epoxy/NBR Electrospun Fibers Spray-Coated with AgNW/PU Composites. Macromol. Chem. Phys. 2019, 220, 1800387. [Google Scholar] [CrossRef]
- Jian, P.-Z.; Chiu, Y.-C.; Sun, H.-S.; Chen, T.-Y.; Chen, W.-C.; Tung, S.-H. Using a Single Electrospun Polymer Nanofiber to Enhance Carrier Mobility in Organic Field-Effect Transistors toward Nonvolatile Memory. ACS Appl. Mater. Interfaces 2014, 6, 5506–5515. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lee, S.; Yokota, T.; Wang, H.; Jiang, Z.; Wang, J.; Koizumi, M.; Someya, T. A Durable Nanomesh On-Skin Strain Gauge for Natural Skin Motion Monitoring with Minimum Mechanical Constraints. Sci. Adv. 2020, 6, eabb7043. [Google Scholar] [CrossRef] [PubMed]
- Ren, M.; Zhou, Y.; Wang, Y.; Zheng, G.; Dai, K.; Liu, C.; Shen, C. Highly Stretchable and Durable Strain Sensor Based on Carbon Nanotubes Decorated Thermoplastic Polyurethane Fibrous Network with Aligned Wave-like Structure. Chem. Eng. J. 2019, 360, 762–777. [Google Scholar] [CrossRef]
- Li, X.; Fan, Y.J.; Li, H.Y.; Cao, J.W.; Xiao, Y.C.; Wang, Y.; Liang, F.; Wang, H.L.; Jiang, Y.; Wang, Z.L.; et al. Ultracomfortable Hierarchical Nanonetwork for Highly Sensitive Pressure Sensor. ACS Nano 2020, 14, 9605–9612. [Google Scholar] [CrossRef] [PubMed]
- Qi, K.; Zhou, Y.; Ou, K.; Dai, Y.; You, X.; Wang, H.; He, J.; Qin, X.; Wang, R. Weavable and Stretchable Piezoresistive Carbon Nanotubes-Embedded Nanofiber Sensing Yarns for Highly Sensitive and Multimodal Wearable Textile Sensor. Carbon 2020, 170, 464–476. [Google Scholar] [CrossRef]
- Zhao, Z.; Huang, Q.; Yan, C.; Liu, Y.; Zeng, X.; Wei, X.; Hu, Y.; Zheng, Z. Machine-Washable and Breathable Pressure Sensors Based on Triboelectric Nanogenerators Enabled by Textile Technologies. Nano Energy 2020, 70, 104528. [Google Scholar] [CrossRef]
- Jiang, J.; Tu, S.; Fu, R.; Li, J.; Hu, F.; Yan, B.; Gu, Y.; Chen, S. Flexible Piezoelectric Pressure Tactile Sensor Based on Electrospun BaTiO3/Poly(Vinylidene Fluoride) Nanocomposite Membrane. ACS Appl. Mater. Interfaces 2020, 12, 33989–33998. [Google Scholar] [CrossRef]
- Persano, L.; Dagdeviren, C.; Su, Y.; Zhang, Y.; Girardo, S.; Pisignano, D.; Huang, Y.; Rogers, J.A. High Performance Piezoelectric Devices Based on Aligned Arrays of Nanofibers of Poly(Vinylidenefluoride-Co-Trifluoroethylene). Nat. Commun. 2013, 4, 1633. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Wang, X.; Chen, F.; Zhu, K.; Xu, Q.; Tang, M. Novel Electrochemical Biosensor Based on Functional Composite Nanofibers for Sensitive Detection of P53 Tumor Suppressor Gene. Anal. Chim. Acta 2013, 765, 63–69. [Google Scholar] [CrossRef]
- Wang, W.; Li, Z.; Jiang, T.; Zhao, Z.; Li, Y.; Wang, Z.; Wang, C. Sulfonated Poly(Ether Ether Ketone)/Polypyrrole Core–Shell Nanofibers: A Novel Polymeric Adsorbent/Conducting Polymer Nanostructures for Ultrasensitive Gas Sensors. ACS Appl. Mater. Interfaces 2012, 4, 6080–6084. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Liu, L.; Wen, C.-B.; Li, J. Spatiotemporal signal processing and device stability based on bi-layer bio-mimetic memristor. Acta Phys. Sin. 2021, 70, 178504–178509. [Google Scholar] [CrossRef]
- John, R.A.; Ko, J.; Kulkarni, M.R.; Tiwari, N.; Chien, N.A.; Ing, N.G.; Leong, W.L.; Mathews, N. Flexible Ionic-Electronic Hybrid Oxide Synaptic TFTs with Programmable Dynamic Plasticity for Brain-Inspired Neuromorphic Computing. Small 2017, 13, 1701193. [Google Scholar] [CrossRef]
- Liu, D.; Shi, Q.; Dai, S.; Huang, J. The Design of 3D-Interface Architecture in an Ultralow-Power, Electrospun Single-Fiber Synaptic Transistor for Neuromorphic Computing. Small 2020, 16, 1907472. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Cho, Y.W.; Lee, J.; Jung, Y.; Oh, S.; Sun, J.; Kim, S.; Joo, Y. Nanofiber Channel Organic Electrochemical Transistors for Low-Power Neuromorphic Computing and Wide—Bandwidth Sensing Platforms. Adv. Sci. 2021, 8, 2001544. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Shin, B.; Liu, G.; Shan, F. Electrospun ZnSnO Nanofibers for Neuromorphic Transistors With Ultralow Energy Consumption. IEEE Electron Device Lett. 2019, 40, 1776–1779. [Google Scholar] [CrossRef]
- Ning, Y.; Zhang, Z.; Teng, F.; Fang, X. Novel Transparent and Self-Powered UV Photodetector Based on Crossed ZnO Nanofiber Array Homojunction. Small 2018, 14, 1703754. [Google Scholar] [CrossRef]
- Long, Z.; Xu, X.; Yang, W.; Hu, M.; Shtansky, D.V.; Golberg, D.; Fang, X. Cross-Bar SnO2-NiO Nanofiber-Array-Based Transparent Photodetectors with High Detectivity. Adv. Electron. Mater. 2020, 6, 1901048. [Google Scholar] [CrossRef]
- He, W.; Chen, K.; Pathak, R.; Hummel, M.; Reza, K.M.; Ghimire, N.; Pokharel, J.; Lu, S.; Gu, Z.; Qiao, Q.; et al. High-Mass-Loading Sn-Based Anode Boosted by Pseudocapacitance for Long-Life Sodium-Ion Batteries. Chem. Eng. J. 2021, 414, 128638. [Google Scholar] [CrossRef]
- Xu, M.; Fu, N.; Wang, X.; Yang, Z. A High Energy Density Flexible Symmetric Supercapacitor Based on Al-Doped MnO2 Nanosheets @ Carbon Cloth Electrode Materials. J. Mater. Sci. Mater. Electron. 2020, 31, 16027–16036. [Google Scholar] [CrossRef]
- Li, J.; Zhang, W.; Zhang, X.; Huo, L.; Liang, J.; Wu, L.; Liu, Y.; Gao, J.; Pang, H.; Xue, H. Copolymer Derived Micro/Meso-Porous Carbon Nanofibers with Vacancy-Type Defects for High-Performance Supercapacitors. J. Mater. Chem. A 2020, 8, 2463–2471. [Google Scholar] [CrossRef]
- Chen, C.; Guan, J.; Li, N.W.; Lu, Y.; Luan, D.; Zhang, C.H.; Cheng, G.; Yu, L.; Lou, X.W. (David) Lotus-Root-Like Carbon Fibers Embedded with Ni–Co Nanoparticles for Dendrite-Free Lithium Metal Anodes. Adv. Mater. 2021, 33, 2100608. [Google Scholar] [CrossRef]
- Tao, L.; Xu, Z.; Kuai, C.; Zheng, X.; Wall, C.E.; Jiang, C.; Esker, A.R.; Zheng, Z.; Lin, F. Flexible Lignin Carbon Membranes with Surface Ozonolysis to Host Lean Lithium Metal Anodes for Nickel-Rich Layered Oxide Batteries. Energy Storage Mater. 2020, 24, 129–137. [Google Scholar] [CrossRef]
- Liu, B.; Sun, Y.; Liu, L.; Chen, J.; Yang, B.; Xu, S.; Yan, X. Recent Advances in Understanding Li–CO2 Electrochemistry. Energy Environ. Sci. 2019, 12, 887–922. [Google Scholar] [CrossRef]
- Jeong, M.-G.; Kwak, W.-J.; Shin, H.-J.; Sun, Y.-K.; Jung, H.-G. Perpendicularly Aligned TiC-Coated Carbon Cloth Cathode for High-Performance Li-O2 Batteries. Chem. Eng. J. 2020, 399, 125699. [Google Scholar] [CrossRef]
- Xiong, J.; Liu, Y.; Li, A.; Wei, L.; Wang, L.; Qin, X.; Yu, J. Mass Production of High-Quality Nanofibers via Constructing Pre-Taylor Cones with High Curvature on Needleless Electrospinning. Mater. Des. 2021, 197, 109247. [Google Scholar] [CrossRef]
Category | Detailed Factors | Changes in Nanofibers |
---|---|---|
Solution Variables | Target material concentration | Fiber diameter increases with the rising concentration |
Electrical conductivity of the solution | Fiber diameter increases with the rising conductivity. | |
Viscosity and surface tension of the solution | Too high or too low factors lead to poor fiber morphology. | |
The molecular weight of the target material | Fiber diameter decreases with increasing molecular weight. | |
Conditions of Electrospinning Process | Spinneret inner diameter | Fiber size is smaller with a smaller spinneret inner diameter. |
Flow rate | High flow rate causes increased fiber diameter. | |
Distance between the needle and the collector | Smaller distance results in larger fiber diameter. | |
Environmental Factors | Ambient humidity | High humidity prolongs the produced jet. |
surrounding temperature | Temperature controls the viscosity of the solution and the fiber size. |
Year | Nanofiber Material | Mobility (μ, cm2 V−1 s−1) | Ion/Ioff | Characteristics | Applications | References |
---|---|---|---|---|---|---|
2003 | Camphorsulfonic-acid-doped PEO | 1.43 × 10−4 | — | [61] | ||
2005 | RRP3HT | 0.03 | 103 | — | — | [84] |
2005 | P3HT | 4 × 10−4 | 7 | [64] | ||
2006 | CuO(p-type) | — | — | Conductivity~3 × 10−3 S/cm | — | [67] |
2009 | P3HT | 0.017 | 102 | [62] | ||
2010 | P3HT | 2 | 105 | Flexible, high frequency operation | [63] | |
2010 | MEH-PPV | 10−3 | 780 | Single nanofiber | Photoluminescence/Light-emitting | [82] |
2011 | P4TDPP/PMMA | 0.305 | 1.3 × 105 | Crystalline-induced procedure | [85] | |
2011 | PANi(p-type) | 2 × 10−3 | Single nanofiber | Gas sensor with tunable sensitivity | [80] | |
2011 | Au-doped PANi | 11.6 | [65] | |||
2012 | P(NDI2OD-T2)/PEO | 0.1 | Single fiber, Stable | [86] | ||
2012 | GZO | 104 | Gas sensing including humidity | [81] | ||
2013 | ZnO | 4.6 × 10−3 | Different calcined atmosphere | [87] | ||
2013 | P3HT/PSA | 3.21 × 10−2 | 104 | Excellent air resistive ability | [69] | |
2014 | LiNiO | 3.3 × 10−4 | Transparent | [88] | ||
2014 | P3DT:P3HT | 5.0 × 10−3 | High bending stability | [89] | ||
2016 | ZnO | 0.018 | 103 | Aligned | Photoconductivity | [90] |
2016 | PQT-12/PEO | 1.18 × 10−3 | 1.86 × 103 | Flexible, highly stable under extreme bending conditions | Real-time photosensing | [66] |
2016 | MCNFs | High sensitivity, specificity and stability | BPA dection | [83] | ||
2016 | AZO | 3.3 × 10−3 | 103 | [91] | ||
2017 | PEDOT:PSS(p-type) | 5.5 | 730 | [92] | ||
2017 | CuO(p-type) | 3.5 | 3 × 105 | Low operating voltage, fast switching speed | Driving unit for LED | [93] |
2017 | PS/DPP | 0.22 | 105 | Floating-gate transistor memory | [94] | |
2018 | NiO(p-type) | 2.8 | 104 | Excellent dynamic behavior | Light-emitting | [71] |
2018 | ZnO | 0.02 | 106 | Low-operating voltages | [78] | |
2018 | ZnSnO | 0.17 | 2 × 107 | Low operating voltage | Resistor-loaded inverter | [13] |
2018 | InGdO | 17.4 | 108 | Low operating voltage | Resistor-loaded inverter | [95] |
2018 | Mg-doped In2O3 | 5.3 | 1.7 × 105 | [73] | ||
2019 | Sr-doped In2O3 | 4.8 | 108 | Enhanced stability | Resistor-loaded inverters | [96] |
2019 | PEDOT-PSS(p-type) | 0.5 | Non-volatile charge storage | [97] | ||
2019 | InZnO | 5.49 | 107 | [68] | ||
HfInZnO | 0.06 | 105 | ||||
2019 | TiO2 | Arranged nanofibers, Mixed anatase-rutile TiO2 | [98] | |||
2019 | P3HT | 0.357 | 4.57 × 103 | Hollow (Coaxial electrospinning) | [70] | |
2020 | In2O3 | 1.27 | 5 × 107 | Excellent reliability and reproducibility | [99] | |
2020 | In2O3 | 1.53 | 8 × 104 | Nontoxic and low-temperature preparation | [76] | |
2020 | ZnSnO | 21.58 | 108 | Different annealing atmosphere and temperature | Resistor-loaded inverters | [74] |
2020 | IGO | 35.1 | 107 | Dual-gate structure | [100] | |
2020 | InYbO | 6.18 | 107 | Outstanding selectivity towards DMF | Gas sensing | [101] |
2020 | Al, Ga, Cr doped In2O3 | 2.0 | 108 | Low operating voltage | Resistor loaded inverter | [72] |
2020 | Al functionalized β-Bi2O3 | 64.4 | 106 | Excellent sensitivity, stability and reproducibility | Biosensor for detection of serotonin | [102] |
2020 | IGZO | 5.32 | 4.35 × 106 | Good electrical properties and reliability | Resistor-loaded inverters | [79] |
2021 | IGZO | 2.45 | 3.8 × 102 | Double gate, high pH sensitivities | Chemical sensors | [103] |
2021 | In2O3 | 1.51 | 1.5 × 107 | Ar/O2 plasma treatment | [104] | |
2021 | IAZO | 30 | 5.6 × 106 | [75] | ||
2021 | In2O3 | 27.7 | 107 | Great stability | Resistor-loaded inverter | [105] |
2021 | SnO2 | 2.3 | 106 | Adjustable grain size | [77] | |
2021 | PVA (with evaporated CuPc) | 8.77 × 10−3 | 1.37 × 103 | Short response and recovery time for detecting NO2 | Gas monitoring | [106] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Qiao, Y.; Cui, T.; Wu, F.; Ji, S.; Yang, Y.; Tian, H.; Ren, T. Electrospun Nanofibers for Integrated Sensing, Storage, and Computing Applications. Appl. Sci. 2022, 12, 4370. https://doi.org/10.3390/app12094370
Guo Y, Qiao Y, Cui T, Wu F, Ji S, Yang Y, Tian H, Ren T. Electrospun Nanofibers for Integrated Sensing, Storage, and Computing Applications. Applied Sciences. 2022; 12(9):4370. https://doi.org/10.3390/app12094370
Chicago/Turabian StyleGuo, Yizhe, Yancong Qiao, Tianrui Cui, Fan Wu, Shourui Ji, Yi Yang, He Tian, and Tianling Ren. 2022. "Electrospun Nanofibers for Integrated Sensing, Storage, and Computing Applications" Applied Sciences 12, no. 9: 4370. https://doi.org/10.3390/app12094370
APA StyleGuo, Y., Qiao, Y., Cui, T., Wu, F., Ji, S., Yang, Y., Tian, H., & Ren, T. (2022). Electrospun Nanofibers for Integrated Sensing, Storage, and Computing Applications. Applied Sciences, 12(9), 4370. https://doi.org/10.3390/app12094370