Dysprosium Absorption of Aluminum Tolerant- and Absorbing-Yeast
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains, Media and Culture Conditions
2.2. Preparation of Yeast Protoplasts
2.3. Preparation of Dead Cells
2.4. Assay for Dy Absorption in Yeast Cells
3. Results
3.1. Effect of Dy on Yeast Growth
3.2. Dy Absorption in Yeast Strains
3.3. Effect of Treated pH on Dy Absorption
3.4. Dy Absorption Using Heat-Killed Cells
3.5. Localization of Absorbed Dy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuroda, K.; Ueda, M. Engineering of microorganisms towards recovery of rare metal ions. Appl. Microbiol. Biotechnol. 2010, 87, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Adachi, G.; Imanaka, N. The binary rare earth oxides. Chem. Rev. 1998, 98, 1479–1514. [Google Scholar] [CrossRef] [PubMed]
- Ambaye, T.G.; Vaccari, M.; Castro, F.D.; Prasad, S.; Rtimi, S. Emerging technologies for the recovery of rare earth elements (REEs) from the end-of-life electronic wastes: A review on progress, challenges, and perspectives. Environ. Sci. Pollut. Res. 2020, 27, 36052–36074. [Google Scholar] [CrossRef] [PubMed]
- Gadd, G.M. Biosorption: Critical review of scientific rationale, environmental importance and significance for pollution treatment. J. Chem. Technol. Biotechnol. 2009, 84, 13–28. [Google Scholar] [CrossRef]
- Bonificio, W.; Clarke, D.R. Rare-earth separation using bacteria. Environ. Sci. Technol. Lett. 2016, 14, 180–184. [Google Scholar] [CrossRef]
- Philip, L.; Iyengar, L.; Venkobachar, C. Biosorption of U, LA, Pr, Nd, Eu, Dy by Pseudomonas aeruginosa. J. Ind. Microbiol. Biotechnol. 2000, 25, 1–7. [Google Scholar] [CrossRef]
- Oliveira, R.C.; Garcia, O.J. Study of biosorption of rare earth metals (La, Nd, Eu, Gd) by Sargassum sp. biomass in batch systems: Physicochemical evaluation of kinetics and adsorption models. Adv. Mater. Res. 2009, 71, 605–608. [Google Scholar] [CrossRef]
- Devi, A.P.; Mishra, P.M. Biosorption of dysprosium (III) using raw and surface-modified bark powder of Mangifera indica: Isotherm, kinetic and thermodynamic studies. Environ. Sci. Pollut. Res. Int. 2019, 26, 6545–6556. [Google Scholar] [CrossRef] [PubMed]
- Moriwaki, H.; Masuda, R.; Yamazaki, Y.; Horiuchi, K.; Miyashita, M.; Kasahara, J.; Tanaka, T.; Yamamoto, H. Application of freeze-dried powders of genetically engineered microbial strains as adsorbents for rare earth metal ions. ACS Appl. Mater. Interfaces 2016, 8, 26524–26531. [Google Scholar] [CrossRef] [PubMed]
- Kakita, K.; Kishida, M. Isolation of aluminum-tolerant and -absorbing yeast. Biocontr. Sci. 2020, 25, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Brachmann, C.B.; Davies, A.; Cost, G.J.; Caputo, E.; Li, J.; Hieter, P.; Boeke, J.D. Designer deletion strains derived from Saccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 1998, 14, 115–132. [Google Scholar] [CrossRef]
- Kishida, M.; Muguruma, T.; Sakanaka, K.; Katsuragi, T.; Sakai, T. Chromosomal deletion or rearrangement in chimeric hybrids of Saccharomycopsis fibuligera and Saccharomyces diastaticus obtained by cell fusion. J. Ferment. Bioeng. 1996, 4, 281–285. [Google Scholar] [CrossRef]
- Li, J.; Karboune, S. A comparative study for the isolation and characterization of mannoproteins from Saccharomyces cerevisiae yeast cell wall. Int. J. Biol. Macromol. 2018, 119, 654–661. [Google Scholar] [CrossRef] [PubMed]
- Groves, J.D.; Falson, P.; MaiRe, M.; Tanner, M.J.A. Functional cell surface expression of the anion transport domain of human red cell band 3 (AE1) in the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 1996, 93, 12245–12250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brewer, A.; Chang, E.; Park, D.M.; Kou, T.; Li, Y.; Lammers, L.N.; Jiao, Y. Recovery of rare earth elements from geothermal fluids through bacterial cell surface adsorption. Environ. Sci. Technol. 2019, 53, 7714–7723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heilmann, M.; Breiter, R.; Becker, A.M. Towards rare earth element recovery from wastewaters: Biosorption using phototrophic organisms. Appl. Microbiol. Biotechnol. 2021, 105, 5229–5239. [Google Scholar] [CrossRef] [PubMed]
- Myers, J.A.; Curtis, B.S.; Curtis, W.R. Improving accuracy of cell and chromophore concentration measurements using optical density. BMC Biophys. 2013, 6, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perego, P.; Howell, S.B. Molecular mechanisms controlling sensitivity to toxic metal ions in yeast. Toxicol. Appl. Pharmacol. 1997, 147, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Tun, N.M.; O’Doherty, P.J.; Chen, Z.H.; Wu, X.Y.; Bailey, T.D.; Kersaitis, C.; Wu, M.J. Identification of aluminum transport-related genes via genome-wide phenotypic screening of Saccharomyces cerevisiae. Metallomics 2014, 6, 1558–1564. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kishida, M.; Kakita, K. Dysprosium Absorption of Aluminum Tolerant- and Absorbing-Yeast. Appl. Sci. 2022, 12, 4352. https://doi.org/10.3390/app12094352
Kishida M, Kakita K. Dysprosium Absorption of Aluminum Tolerant- and Absorbing-Yeast. Applied Sciences. 2022; 12(9):4352. https://doi.org/10.3390/app12094352
Chicago/Turabian StyleKishida, Masao, and Kosuke Kakita. 2022. "Dysprosium Absorption of Aluminum Tolerant- and Absorbing-Yeast" Applied Sciences 12, no. 9: 4352. https://doi.org/10.3390/app12094352
APA StyleKishida, M., & Kakita, K. (2022). Dysprosium Absorption of Aluminum Tolerant- and Absorbing-Yeast. Applied Sciences, 12(9), 4352. https://doi.org/10.3390/app12094352