Iori, M.;                     Di Castelnuovo, C.;                     Verzellesi, L.;                     Meglioli, G.;                     Lippolis, D.G.;                     Nitrosi, A.;                     Monelli, F.;                     Besutti, G.;                     Trojani, V.;                     Bertolini, M.;     
    et al.    Mortality Prediction of COVID-19 Patients Using Radiomic and Neural Network Features Extracted from a Wide Chest X-ray Sample Size: A Robust Approach for Different Medical Imbalanced Scenarios. Appl. Sci. 2022, 12, 3903.
    https://doi.org/10.3390/app12083903
    AMA Style
    
                                Iori M,                                 Di Castelnuovo C,                                 Verzellesi L,                                 Meglioli G,                                 Lippolis DG,                                 Nitrosi A,                                 Monelli F,                                 Besutti G,                                 Trojani V,                                 Bertolini M,         
        et al.        Mortality Prediction of COVID-19 Patients Using Radiomic and Neural Network Features Extracted from a Wide Chest X-ray Sample Size: A Robust Approach for Different Medical Imbalanced Scenarios. Applied Sciences. 2022; 12(8):3903.
        https://doi.org/10.3390/app12083903
    
    Chicago/Turabian Style
    
                                Iori, Mauro,                                 Carlo Di Castelnuovo,                                 Laura Verzellesi,                                 Greta Meglioli,                                 Davide Giosuè Lippolis,                                 Andrea Nitrosi,                                 Filippo Monelli,                                 Giulia Besutti,                                 Valeria Trojani,                                 Marco Bertolini,         
         and et al.        2022. "Mortality Prediction of COVID-19 Patients Using Radiomic and Neural Network Features Extracted from a Wide Chest X-ray Sample Size: A Robust Approach for Different Medical Imbalanced Scenarios" Applied Sciences 12, no. 8: 3903.
        https://doi.org/10.3390/app12083903
    
    APA Style
    
                                Iori, M.,                                 Di Castelnuovo, C.,                                 Verzellesi, L.,                                 Meglioli, G.,                                 Lippolis, D. G.,                                 Nitrosi, A.,                                 Monelli, F.,                                 Besutti, G.,                                 Trojani, V.,                                 Bertolini, M.,                                 Botti, A.,                                 Castellani, G.,                                 Remondini, D.,                                 Sghedoni, R.,                                 Croci, S.,                                 & Salvarani, C.        
        
        (2022). Mortality Prediction of COVID-19 Patients Using Radiomic and Neural Network Features Extracted from a Wide Chest X-ray Sample Size: A Robust Approach for Different Medical Imbalanced Scenarios. Applied Sciences, 12(8), 3903.
        https://doi.org/10.3390/app12083903