Investigation of Breakaway Time Delay Phenomenon in Isothermal Test with Zircaloy-4 under Oxygen Atmosphere at 1000 °C
Abstract
:1. Introduction
2. Experimental Setup
3. Results and Discussions
3.1. Results of Isothermal Oxidation Experiments
3.2. Reaction Heat Measurement
3.3. Macro- and Micrograph Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duriez, C.; Dupont, T.; Schmet, B.; Enoch, F. Zircaloy-4 and M5® high temperature oxidation and nitriding in air. J. Nucl. Mater. 2008, 380, 30–45. [Google Scholar] [CrossRef]
- Coindreau, O.; Duriez, C.; Ederli, S. Air oxidation of Zircaloy-4 in the 600–1000 °C temperature range: Modeling for ASTEC code application. J. Nucl. Mater. 2010, 405, 207–215. [Google Scholar] [CrossRef]
- Steinbrück, M.; Vér, N.; Große, M. Oxidation of Advanced Zirconium Cladding Alloys in Steam at Temperatures in the Range of 600–1200 °C. Oxid. Met. 2011, 76, 215–232. [Google Scholar] [CrossRef]
- Steinbrück, M. Prototypical experiments relating to air oxidation of Zircaloy-4 at high temperatures. J. Nucl. Mater. 2009, 392, 531–544. [Google Scholar] [CrossRef]
- Grosse, M.; Steinbrueck, M.; Maeng, Y.; Sung, J. Influence of the steam and oxygen flow rate on the reaction of zirconium in steam/nitrogen and oxygen/nitrogen atmospheres. In Proceedings of the International Congress on Advances in Nuclear Power Plants (ICAPP), San Francisco, CA, USA, 17–20 April 2016. [Google Scholar]
- Steinbruck, M.; Schaffer, S. High-Temperature Oxidation of Zircaloy-4 in Oxygen–Nitrogen Mixtures. Oxid. Met. 2015, 85, 245–262. [Google Scholar] [CrossRef]
- Steinbrück, M. Oxidation of Zirconium Alloys in Oxygen at High Temperatures up to 1600 °C. Oxid. Met. 2008, 70, 317–329. [Google Scholar] [CrossRef]
- Negyesi, M.; Amaya, M. The influence of the air fraction in steam on the growth of the columnar oxide and the adjacent α-Zr(O) layer on Zry-4 fuel cladding at 1273 and 1473 K. Ann. Nucl. Energy 2018, 114, 52–65. [Google Scholar] [CrossRef]
- Leistikow, S.; Schanz, G. Oxidation kinetics and related phenomena of zircaloy-4 fuel cladding exposed to high temperature steam and hydrogen-steam mixtures under PWR accident conditions. Nucl. Eng. Des. 1987, 103, 65–84. [Google Scholar] [CrossRef]
- Qin, W.; Nam, C.; Li, H.; Szpunar, J. Tetragonal phase stability in ZrO2 film formed on zirconium alloys and its effects on corrosion resistance. Acta Mater. 2007, 55, 1695–1701. [Google Scholar] [CrossRef]
- Baek, J.H.; Jeong, Y.H. Breakaway phenomenon of Zr-based alloys during a high-temperature oxidation. J. Nucl. Mater. 2008, 372, 152–159. [Google Scholar] [CrossRef]
- El Kadiri, H.; Utegulov, Z.; Khafizov, M.; Zaeem, M.A.; Mamivand, M.; Oppedal, A.; Enakoutsa, K.; Cherkaoui, M.; Graham, R.; Arockiasamy, A. Transformations and cracks in zirconia films leading to breakaway oxidation of Zircaloy. Acta Mater. 2013, 61, 3923–3935. [Google Scholar] [CrossRef]
- Kim, H.-G.; Kim, I.-H.; Choi, B.-K.; Park, J.-Y. A study of the breakaway oxidation behavior of zirconium cladding materials. J. Nucl. Mater. 2011, 418, 186–197. [Google Scholar] [CrossRef]
- Park, D.J.; Park, J.Y.; Jeong, Y.H.; Lee, J.Y. Microstructural characterization of ZrO2 layers formed during the transition to breakaway oxidation. J. Nucl. Mater. 2010, 399, 208–211. [Google Scholar] [CrossRef]
- Garner, A.; Gholinia, A.; Frankel, P.; Gass, M.; MacLaren, I.; Preuss, M. The microstructure and microtexture of zirconium oxide films studied by transmission electron backscatter diffraction and automated crystal orientation mapping with transmission electron microscopy. Acta Mater. 2014, 80, 159–171. [Google Scholar] [CrossRef]
Oxygen Flow Rate (mL/min) | Final Mass Gain (%) | Peak Temperature (°C) | Breakaway Time (s) | δ at Breakaway (µm) |
---|---|---|---|---|
20 | 14.24 | 1001.86 | 1473 | 47.90 |
40 | 15.12 | 1003.17 | 1341 | 50.14 |
60 | 17.89 | 1004.44 | 1387 | 52.25 |
80 | 25.08 | 1005.81 | 1242 | 54.50 |
100 | 27.80 | 1033.81 | 1386 | 66.17 |
120 | 26.75 | 1038.88 | 1430 | 71.65 |
140 | 26.02 | 1048.33 | 1395 | 78.94 |
160 | 16.17 | 1062.71 | 1672 | 81.78 |
180 | 9.48 | 1076.14 | 3079 | 94.81 |
200 | 11.24 | 1096.42 | 6109 | 131.12 |
Average (20–140) Average (20–200) | 21.84 18.98 | 1019.47 1037.16 | 1379 2051 | 57.10 72.92 |
Alumina tube (Dummy test) | 0.08 | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, G.; Seo, S.; Lee, J. Investigation of Breakaway Time Delay Phenomenon in Isothermal Test with Zircaloy-4 under Oxygen Atmosphere at 1000 °C. Appl. Sci. 2022, 12, 2871. https://doi.org/10.3390/app12062871
Kim G, Seo S, Lee J. Investigation of Breakaway Time Delay Phenomenon in Isothermal Test with Zircaloy-4 under Oxygen Atmosphere at 1000 °C. Applied Sciences. 2022; 12(6):2871. https://doi.org/10.3390/app12062871
Chicago/Turabian StyleKim, Gippeum, Siwon Seo, and Jaeyoung Lee. 2022. "Investigation of Breakaway Time Delay Phenomenon in Isothermal Test with Zircaloy-4 under Oxygen Atmosphere at 1000 °C" Applied Sciences 12, no. 6: 2871. https://doi.org/10.3390/app12062871
APA StyleKim, G., Seo, S., & Lee, J. (2022). Investigation of Breakaway Time Delay Phenomenon in Isothermal Test with Zircaloy-4 under Oxygen Atmosphere at 1000 °C. Applied Sciences, 12(6), 2871. https://doi.org/10.3390/app12062871