# NMR in Metabolomics: From Conventional Statistics to Machine Learning and Neural Network Approaches

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Conventional Approaches

#### 2.1. Unsupervised Methods

#### 2.1.1. Principal Component Analysis (PCA)

#### 2.1.2. Clustering

#### 2.1.3. Self-Organizing Maps (SOMs)

#### 2.2. Supervised Methods

- The filter method marks subgroups of variables by calculate “easy to compute” quantities ahead of the model training.
- The wrapper method marks subgroups of variables by applying the chosen trained models on the testing dataset with the aim to determine the achieving the optimal performance.
- The embedded method is able to ascertain simultaneously the feature selection and model structure.

#### 2.2.1. Random Forest (RF) and k-Nearest Neighbors (KNN)

_{i}and with the aim to predict Y, the KNN algorithm selects the k-nearest observations of X

_{i}in ${\{{Y}_{j},{X}_{j}\}}_{1jK}$. Let ${i}_{1},...,{i}_{k}$ be the k values which provide the k minimum values of the function: g(j) = d(X${}_{j}$ - X${}_{i}$). These minimum values can be equal if there are multiple values of X${}_{j}$ at the same distance from X${}_{i}$ [59]. There are at least the three possibilities for the distance (Euclidean, Manhattan and Minkowski). So, the value predicted for Y${}_{i}$ is the mean value of the k values Y${}_{j}$ for the k nearest neighbors of X${}_{i}$:

#### 2.2.2. Principal Component Regression (PCR) and Partial Least Squares (PLS)

#### 2.2.3. Support Vector Machine (SVM)

#### 2.3. Pathway Analysis Methods

#### 2.3.1. Over-Representation Analysis (ORA)

#### 2.3.2. Functional Class Scoring (FCS)

- A statistical approach is applied to compute differential expression of individual metabolites (metabolite-level statistics), looking for correlations of molecular measurements with phenotype [87]. Those mostly used consider the analysis of variance (ANOVA) [88], Q-statistic [89], signal-to-noise ratio [90], t-test [91], and Z-score [92]. The choice of the most suitable statistical approach may depend on the number of biological replicates and on the effect of the metabolites set on a specific pathway [93].
- Initial statistics for all metabolites of a given pathway are combined into statistics on different pathways (pathway-level statistics) that can consider interdependencies among metabolites (multivariate) [94] or not (univariate) [91]. The pathway-level statistics usually is performed in terms of the Kolmogorov–Smirnov statistics [90], mean or median of metabolite-level statistics [93], the Wilcoxon rank sum [95], and the maxmean statistics [96]. Note that, although multivariate statistics should have more statistical significance, univariate statistics provide the best results if applied to the data of biologic systems (p≤ 0.001) [97].
- The last FCS step corresponds to estimating the significance of the so-called pathway-level statistics. In detail, the null hypothesis can be tested into two different ways: (i) by permuting metabolite labels for every pathways, so comparing the set of metabolites in that pathway with a set of metabolites not included in that pathway (competitive null hypothesis) [75] and (ii) by permuting class labels for every sample, so comparing the collection of metabolites in a considered pathway with itself, whereas the metabolites excluded by that pathway are not considered (self-contained null hypothesis) [91].

#### 2.3.3. Metabolic Pathway Reconstruction and Simulation

## 3. Artificial Intelligence toward Learning Techniques

#### Machine Learning, Neural Networks and Deep Learning

- Supervised learning (discriminative) includes multi-layer perceptron (MLP), convolutional neural network (CNN), long short-term memory (LSTM) and gated recurrent unit (GRU);
- Unsupervised learning (generative) includes generative adversarial network (GAN), autoencoder (AE), sparse autoencoder (SAE), denoising autoencoder (DAE), contractive autoencoder (CAE), variational autoencoder (VAE), self-organizing map (SOM), restricted Boltzmann machine (RBM) and deep belief network (DBN);
- Hybrid learning (both discriminative and generative) includes models composed by both supervised and unsupervised algorithms other than deep transfer learning (DTL) and deep reinforcement learning (DRL).

- 1.
**Classic neural networks**encompass linear and non-linear functions which, in turn, include S-shaped functions ranging from 0 to 1 (sigmoid) or from −1 to 1 (hyperbolic tangent, tanh) and rectified linear unit (ReLU), which gives 0 for input lower than the set value or evaluates a linear multiple for bigger input.- 2.
**Convolutional neural networks (CNN)**take into high consideration the neuron organization found in the visual cortex of an animal brain. It is particularly suited for high complexity and allows for optimal pre-processing. Four stages can be considered for CNN building (see Figure 17):- (a)
- Deduce feature maps from input after applying a proper function (convolution);
- (b)
- Reveal an image after given changes (max-pooling);
- (c)
- Flatten the data for the CNN analysis (flattening);
- (d)
- Compiling the loss function by a hidden layer (full connection).

- 3.
**Recurrent neural networks (RNN)**are exploited when the objective is the prediction of a sequence. They are a subset of ANN for sequential or time series data, usually applied for language translation, speech recognition, and son on. Their peculiar feature is that the outcome of the output node is a function of the output of previous elements within the sequence (see Figure 18a).- 4.
**Generative adversarial networks (GAN)**combine generator networks for providing artificial data and discriminator networks for distinguishing real and fake data.- 5.
**Self-organizing maps (SOMs)**have a fixed bi-dimensional output since each synapse joins its input and output nodes, and usually take advantage of data reduction performed by unsupervised approaches.- 6.
**Boltzmann machine**is a stochastic model exploited for yielding proper parameters defined in the model.- 7.
**Deep reinforcement learning**are mainly used to understand and so predict the effect of every action executed in a defined state of the observation.- 8.
**Autoencoders**work directly on the considered inputs, without taking into account the effect of activation functions. Among the autoencoders, we mention the following:- (a)
- Sparse autoencoders have more hidden than input layers for reducing overfitting.
- (b)
- Denoising autoencoders are able to reconstruct corrupted data by randomly assigning 0 to some inputs.
- (c)
- Contractive autoencoders include a penalty factor to the loss function to prevent overfitting and data repetition when the network has more hidden than input layers.
- (d)
- Stacked autoencoders perform two stages of encoding by the inclusion of an additional hidden layer.

- 9.
**Backpropagation (BP)**are neural networks that use the flux of information going from the output to input for learning about the errors corresponding to the achieved prediction. An architecture of the BP network is shown in Figure 18b.- 10.
**Gradient descent**are neural networks that identify a slope corresponding to a relation among variables (for example, the error produced in the neural network and data parameter: small data changes provoke errors variations).

## 4. Applications of Deep Learning Approaches for NMR-Based Metabolomics

#### 4.1. Food

#### 4.2. Biomedical

## 5. Conclusions and Future Perspective

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Abbreviations

NMR | Nuclear Magnetic Resonance |

MS | Mass Spectrometry |

AI | Artificial Intelligence |

ML | Machine Learning |

DL | Deep Learning |

NN | Neural Network |

ANN | Artificial Neural Network |

DNN | Deep Neural Network |

PCA | Principal Component Analysis |

PLS | Partial Least Squares |

ORA | Over Representation Analysis |

FCS | Functional Class Scoring |

## Appendix A. Technical Aspects

**Figure A1.**(

**A**) Spectroscopies and corresponding frequency ranges. Larmor frequency of most used nuclei for metabolomics analyses with respect to that of the proton when at 600 MHz. (

**B**) Parts per million intervals for all these nuclei (${}^{15}$N, ${}^{13}$C, ${}^{31}$P, ${}^{19}$F and ${}^{1}$H) at characteristic chemical environments. Figure reprinted from Ref. [3] under the terms of the Creative Common CC-BY license.

**Figure A2.**${}^{1}$H NMR spectrum of ultrafiltered human serum at 700 MHz with the identified compounds labeled above each of the corresponding peaks. Figure reprinted from Ref. [3] under the terms of the Creative Common CC-BY license.

**Figure A3.**${}^{1}$H-${}^{13}$C 2D HSQC experiment to identify TMAO and betaine organic compounds of a biological matrix. Figure reprinted from Ref. [145] under the terms of the Creative Common CC-BY license.

**Figure A4.**(

**A**): The spiking of UDP-nacetylglucosamine (UDP-Gluc-NAc) allows its identification and quantitation. (

**B**): The same spectrum of A without the addition of UDP-Gluc-NAc. Figure reprinted from Ref. [145] under the terms of the Creative Common CC-BY license.

## References

- Muthubharathi, B.C.; Gowripriya, T.; Balamurugan, K. Metabolomics: Small molecules that matter more. Mol. Omics
**2021**, 17, 210–229. [Google Scholar] [CrossRef] [PubMed] - Zhu, M.; Du, X.; Xu, H.; Yang, S.; Wang, C.; Zhu, Y.; Zhang, T.; Zhao, W. Metabolic profiling of liver and faeces in mice infected with echinococcosis. Parasites Vectors
**2021**, 14, 324. [Google Scholar] [CrossRef] [PubMed] - Emwas, A.H.; Roy, R.; McKay, R.T.; Tenori, L.; Saccenti, E.; Gowda, G.A.N.; Raftery, D.; Alahmari, F.; Jaremko, L.; Jaremko, M.; et al. NMR Spectroscopy for Metabolomics Research. Metabolites
**2019**, 9, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Onuh, J.O.; Qiu, H. Metabolic Profiling and Metabolites Fingerprints in Human Hypertension: Discovery and Potential. Metabolites
**2021**, 11, 687. [Google Scholar] [CrossRef] - Caspani, G.; Sebők, V.; Sultana, N.; Swann, J.R.; Bailey, A. Metabolic phenotyping of opioid and psychostimulant addiction: A novel approach for biomarker discovery and biochemical understanding of the disorder. Br. J. Pharmacol.
**2021**, 1–29. [Google Scholar] [CrossRef] - Wishart, D.S.; Guo, A.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B.L.; et al. HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Res.
**2022**, 50, D622–D631. [Google Scholar] [CrossRef] - Ulrich, E.L.; Akutsu, H.; Doreleijers, J.F.; Harano, Y.; Ioannidis, Y.E.; Lin, J.; Livny, M.; Mading, S.; Maziuk, D.; Miller, Z.; et al. BioMagResBank. Nucleic Acids Res.
**2007**, 36, D402–D408. [Google Scholar] [CrossRef] [Green Version] - Goodacre, R.; Broadhurst, D.; Smilde, A.K.; Kristal, B.S.; Baker, J.D.; Beger, R.; Bessant, C.; Connor, S.; Capuani, G.; Craig, A.; et al. Proposed minimum reporting standards for data analysis in metabolomics. Metabolomics
**2007**, 3, 231–241. [Google Scholar] [CrossRef] - Claridge, T.D. High-Resolution NMR Techniques in Organic Chemistry; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Oyedeji, A.B.; Green, E.; Adebiyi, J.A.; Ogundele, O.M.; Gbashi, S.; Adefisoye, M.A.; Oyeyinka, S.A.; Adebo, O.A. Metabolomic approaches for the determination of metabolites from pathogenic microorganisms: A review. Food Res. Int.
**2021**, 140, 110042. [Google Scholar] [CrossRef] - Letertre, M.P.M.; Giraudeau, P.; de Tullio, P. Nuclear Magnetic Resonance Spectroscopy in Clinical Metabolomics and Personalized Medicine: Current Challenges and Perspectives. Front. Mol. Biosci.
**2021**, 8, 698337. [Google Scholar] [CrossRef] - Emwas, A.H.; Alghrably, M.; Al-Harthi, S.; Poulson, B.G.; Szczepski, K.; Chandra, K.; Jaremko, M. New Advances in Fast Methods of 2D NMR Experiments. In Nuclear Magnetic Resonance; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef] [Green Version]
- Deaton, A.; Cartwright, N. Understanding and misunderstanding randomized controlled trials. Soc. Sci. Med.
**2018**, 210, 2–21. [Google Scholar] [CrossRef] [PubMed] - Davies, N.M.; Holmes, M.V.; Davey Smith, G. Reading Mendelian randomisation studies: A guide, glossary, and checklist for clinicians. BMJ
**2018**, 362, k601. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Teumer, A. Common Methods for Performing Mendelian Randomization. Front. Cardiovasc. Med.
**2018**, 5, 51. [Google Scholar] [CrossRef] [PubMed] - Mishra, P.; Biancolillo, A.; Roger, J.M.; Marini, F.; Rutledge, D.N. New data preprocessing trends based on ensemble of multiple preprocessing techniques. TrAC Trends Anal. Chem.
**2020**, 132, 116045. [Google Scholar] [CrossRef] - Augustijn, D.; de Groot, H.J.M.; Alia, A. HR-MAS NMR Applications in Plant Metabolomics. Molecules
**2021**, 26, 931. [Google Scholar] [CrossRef] - Xu, X.; Xie, Z.; Yang, Z.; Li, D.; Xu, X. A t-SNE Based Classification Approach to Compositional Microbiome Data. Front. Genet.
**2020**, 11, 1633. [Google Scholar] [CrossRef] - Worley, B.; Powers, R. Generalized adaptive intelligent binning of multiway data. Chemom. Intell. Lab. Syst.
**2015**, 146, 42–46. [Google Scholar] [CrossRef] [Green Version] - Emwas, A.H.; Saccenti, E.; Gao, X.; Mckay, R.; Martins dos Santos, V.; Roy, R.; Wishart, D. Recommended strategies for spectral processing and post-processing of 1D 1H-NMR data of biofluids with a particular focus on urine. Metabolomics
**2018**, 14, 31. [Google Scholar] [CrossRef] [Green Version] - Anderson, P.; Reo, N.; Delraso, N.; Doom, T.; Raymer, M. Gaussian binning: A new kernel-based method for processing NMR spectroscopic data for metabolomics. Metabolomics
**2008**, 4, 261–272. [Google Scholar] [CrossRef] - Puchades-Carrasco, L.; Palomino-Schätzlein, M.; Pérez-Rambla, C.; Pineda-Lucena, A. Bioinformatics tools for the analysis of NMR metabolomics studies focused on the identification of clinically relevant biomarkers. Brief. Bioinform.
**2015**, 17, 541–552. [Google Scholar] [CrossRef] - Hu, J.M.; Sun, H.T. Serum proton NMR metabolomics analysis of human lung cancer following microwave ablation. Radiat. Oncol.
**2018**, 13, 40. [Google Scholar] [CrossRef] - Dieterle, F.; Ross, A.; Schlotterbeck, G.; Senn, H. Probabilistic Quotient Normalization as Robust Method to Account for Dilution of Complex Biological Mixtures. Application in 1H NMR Metabonomics. Anal. Chem.
**2006**, 78, 4281–4290. [Google Scholar] [CrossRef] [PubMed] - Liu, Z.; Abbas, A.; Jing, B.Y.; Gao, X. WaVPeak: Picking NMR peaks through wavelet-based smoothing and volume-based filtering. Bioinformatics
**2012**, 28, 914–920. [Google Scholar] [CrossRef] [PubMed] [Green Version] - MacDonald, R.; Sokolenko, S. Detection of highly overlapping peaks via adaptive apodization. J. Magn. Reson.
**2021**, 333, 107104. [Google Scholar] [CrossRef] [PubMed] - Dona, A.C.; Kyriakides, M.; Scott, F.; Shephard, E.A.; Varshavi, D.; Veselkov, K.; Everett, J.R. A guide to the identification of metabolites in NMR-based metabonomics/metabolomics experiments. Comput. Struct. Biotechnol. J.
**2016**, 14, 135–153. [Google Scholar] [CrossRef] [Green Version] - Khalili, B.; Tomasoni, M.; Mattei, M.; Mallol Parera, R.; Sonmez, R.; Krefl, D.; Rueedi, R.; Bergmann, S. Automated Analysis of Large-Scale NMR Data Generates Metabolomic Signatures and Links Them to Candidate Metabolites. J. Proteome Res.
**2019**, 18, 3360–3368. [Google Scholar] [CrossRef] [Green Version] - Jaadi, Z. A Step-by-Step Explanation of Principal Component Analysis (PCA). Available online: https://builtin.com/data-science/step-step-explanation-principal-component-analysis (accessed on 8 January 2022).
- AG, S. What Is Principal Component Analysis (PCA) and How It Is Used? Available online: https://www.sartorius.com/en/knowledge/science-snippets/what-is-principal-component-analysis-pca-and-how-it-is-used-507186 (accessed on 8 January 2022).
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
**2016**, 374, 20150202. [Google Scholar] [CrossRef] - Parsons, H.M.; Ludwig, C.; Günther, U.L.; Viant, M.R. Improved classification accuracy in 1- and 2-dimensional NMR metabolomics data using the variance stabilising generalised logarithm transformation. BMC Bioinform.
**2007**, 8, 234. [Google Scholar] [CrossRef] [Green Version] - Izquierdo-Garcia, J.L.; del Barrio, P.C.; Campos-Olivas, R.; Villar-Hernández, R.; Prat-Aymerich, C.; Souza-Galvão, M.L.D.; Jiménez-Fuentes, M.A.; Ruiz-Manzano, J.; Stojanovic, Z.; González, A.; et al. Discovery and validation of an NMR-based metabolomic profile in urine as TB biomarker. Sci. Rep.
**2020**, 10, 22317. [Google Scholar] [CrossRef] - Shiokawa, Y.; Date, Y.; Kikuchi, J. Application of kernel principal component analysis and computational machine learning to exploration of metabolites strongly associated with diet. Sci. Rep.
**2018**, 8, 3426. [Google Scholar] [CrossRef] - Halouska, S.; Powers, R. Negative impact of noise on the principal component analysis of NMR data. J. Magn. Reson.
**2006**, 178, 88–95. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Rutledge, D.N.; Roger, J.M.; Lesnoff, M. Different Methods for Determining the Dimensionality of Multivariate Models. Front. Anal. Sci.
**2021**, 1, 754447. [Google Scholar] [CrossRef] - Smilde, A.K.; Jansen, J.J.; Hoefsloot, H.C.J.; Lamers, R.J.A.N.; van der Greef, J.; Timmerman, M.E. ANOVA-simultaneous component analysis (ASCA): A new tool for analyzing designed metabolomics data. Bioinformatics
**2005**, 21, 3043–3048. [Google Scholar] [CrossRef] - Lemanska, A.; Grootveld, M.; Silwood, C.J.L.; Brereton, R.G. Chemometric variance analysis of NMR metabolomics data on the effects of oral rinse on saliva. Metabolomics
**2012**, 8, 64–80. [Google Scholar] [CrossRef] - Puig-Castellví, F.; Alfonso, I.; Piña, B.; Tauler, R. 1H NMR metabolomic study of auxotrophic starvation in yeast using Multivariate Curve Resolution-Alternating Least Squares for Pathway Analysis. Sci. Rep.
**2016**, 6, 30982. [Google Scholar] [CrossRef] [Green Version] - Trepalin, S.V.; Yarkov, A.V. Hierarchical Clustering of Large Databases and Classification of Antibiotics at High Noise Levels. Algorithms
**2008**, 1, 183–200. [Google Scholar] [CrossRef] [Green Version] - Tiwari, P.; Madabhushi, A.; Rosen, M. A Hierarchical Unsupervised Spectral Clustering Scheme for Detection of Prostate Cancer from Magnetic Resonance Spectroscopy (MRS). In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2007; Ayache, N., Ourselin, S., Maeder, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 278–286. [Google Scholar]
- Čuperlović Culf, M.; Belacel, N.; Culf, A.S.; Chute, I.C.; Ouellette, R.J.; Burton, I.W.; Karakach, T.K.; Walter, J.A. NMR metabolic analysis of samples using fuzzy K-means clustering. Magn. Reson. Chem.
**2009**, 47, S96–S104. [Google Scholar] [CrossRef] [Green Version] - Zou, X.; Holmes, E.; Nicholson, J.K.; Loo, R.L. Statistical HOmogeneous Cluster SpectroscopY (SHOCSY): An Optimized Statistical Approach for Clustering of 1H NMR Spectral Data to Reduce Interference and Enhance Robust Biomarkers Selection. Anal. Chem.
**2014**, 86, 5308–5315. [Google Scholar] [CrossRef] - Gülseçen, S.; Sharma, S.; Akadal, E. Who Runs the World: Data; Istanbul University Press: Istanbul, Turkey, 2020. [Google Scholar] [CrossRef]
- Schonlau, M. Visualizing non-hierarchical and hierarchical cluster analyses with clustergrams. Comput. Stat.
**2004**, 19, 95–111. [Google Scholar] [CrossRef] - Yim, O.; Ramdeen, K.T. Hierarchical Cluster Analysis: Comparison of Three Linkage Measures and Application to Psychological Data. Quant. Methods Psychol.
**2015**, 11, 8–21. [Google Scholar] [CrossRef] - Zhang, Z.; Murtagh, F.; Poucke, S.V.V.; Lin, S.; Lan, P. Hierarchical cluster analysis in clinical research with heterogeneous study population: Highlighting its visualization with R. Ann. Transl. Med.
**2017**, 5, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Richard, V.; Conotte, R.; Mayne, D.; Colet, J.M. Does the 1H-NMR plasma metabolome reflect the host-tumor interactions in human breast cancer? Oncotarget
**2017**, 8, 49915–49930. [Google Scholar] [CrossRef] [PubMed] - Selvaratnam, R.; Chowdhury, S.; VanSchouwen, B.; Melacini, G. Mapping allostery through the covariance analysis of NMR chemical shifts. Proc. Natl. Acad. Sci. USA
**2011**, 108, 6133–6138. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Kohonen, T. Self-Organizing Maps, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Kaski, S. Data exploration using self-organizing maps. In Acta Polytechnica Scandinavica: Mathematics, Computing and Management in Engineering Series no. 82; Finnish Academy of Technology: Espoo, Finland, 1997. [Google Scholar]
- Zheng, H.; Ji, J.; Zhao, L.; Chen, M.; Shi, A.; Pan, L.; Huang, Y.; Zhang, H.; Dong, B.; Gao, H. Prediction and diagnosis of renal cell carcinoma using nuclear magnetic resonance-based serum metabolomics and self-organizing maps. Oncotarget
**2016**, 7, 59189–59198. [Google Scholar] [CrossRef] [Green Version] - Akdemir, D.; Rio, S.; Isidro y Sánchez, J. TrainSel: An R Package for Selection of Training Populations. Front. Genet.
**2021**, 12, 607. [Google Scholar] [CrossRef] - Migdadi, L.; Lambert, J.; Telfah, A.; Hergenröder, R.; Wöhler, C. Automated metabolic assignment: Semi-supervised learning in metabolic analysis employing two dimensional Nuclear Magnetic Resonance (NMR). Comput. Struct. Biotechnol. J.
**2021**, 19, 5047–5058. [Google Scholar] [CrossRef] - Alonso-Salces, R.M.; Gallo, B.; Collado, M.I.; Sasía-Arriba, A.; Viacava, G.E.; García-González, D.L.; Gallina Toschi, T.; Servili, M.; Ángel Berrueta, L. 1H–NMR fingerprinting and supervised pattern recognition to evaluate the stability of virgin olive oil during storage. Food Control
**2021**, 123, 107831. [Google Scholar] [CrossRef] - Suppers, A.; Gool, A.J.v.; Wessels, H.J.C.T. Integrated Chemometrics and Statistics to Drive Successful Proteomics Biomarker Discovery. Proteomes
**2018**, 6, 20. [Google Scholar] [CrossRef] [Green Version] - Biswas, S.; Bordoloi, M.; Purkayastha, B. Review on Feature Selection and Classification using Neuro-Fuzzy Approaches. Int. J. Appl. Evol. Comput.
**2016**, 7, 28–44. [Google Scholar] [CrossRef] - Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput.
**2004**, 14, 199–222. [Google Scholar] [CrossRef] [Green Version] - Altman, N.S. An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. Am. Stat.
**1992**, 46, 175–185. [Google Scholar] [CrossRef] [Green Version] - Venkatesan, P.; Dharuman, C.; Gunasekaran, S. A Comparative Study of Principal Component Regression and Partial least Squares Regression with Application to FTIR Diabetes Data. Indian J. Sci. Technol.
**2011**, 4, 740–746. [Google Scholar] [CrossRef] - Wold, S.; Ruhe, A.; Wold, H.; Dunn, W.J., III. The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses. SIAM J. Sci. Stat. Comput.
**1984**, 5, 735–743. [Google Scholar] [CrossRef] [Green Version] - Lee, L.C.; Liong, C.Y.; Jemain, A.A. Partial least squares-discriminant analysis (PLS-DA) for classification of high-dimensional (HD) data: A review of contemporary practice strategies and knowledge gaps. Analyst
**2018**, 143, 3526–3539. [Google Scholar] [CrossRef] - Song, W.; Wang, H.; Maguire, P.; Nibouche, O. Nearest clusters based partial least squares discriminant analysis for the classification of spectral data. Anal. Chim. Acta
**2018**, 1009, 27–38. [Google Scholar] [CrossRef] - Traquete, F.; Luz, J.; Cordeiro, C.; Sousa Silva, M.; Ferreira, A.E.N. Binary Simplification as an Effective Tool in Metabolomics Data Analysis. Metabolites
**2021**, 11, 788. [Google Scholar] [CrossRef] - Jiménez-Carvelo, A.M.; Martín-Torres, S.; Ortega-Gavilán, F.; Camacho, J. PLS-DA vs sparse PLS-DA in food traceability. A case study: Authentication of avocado samples. Talanta
**2021**, 224, 121904. [Google Scholar] [CrossRef] - Gabrielsson, J.; Jonsson, H.; Airiau, C.; Schmidt, B.; Escott, R.; Trygg, J. OPLS methodology for analysis of pre-processing effects on spectroscopic data. Chemom. Intell. Lab. Syst.
**2006**, 84, 153–158. [Google Scholar] [CrossRef] - Embade, N.; Cannet, C.; Diercks, T.; Gil-Redondo, R.; Bruzzone, C.; Ansó, S.; Echevarría, L.R.; Ayucar, M.M.M.; Collazos, L.; Lodoso, B.; et al. NMR-based newborn urine screening for optimized detection of inherited errors of metabolism. Sci. Rep.
**2019**, 9, 13067. [Google Scholar] [CrossRef] - Huang, S.; Cai, N.; Pacheco, P.P.; Narrandes, S.; Wang, Y.; Xu, W. Applications of Support Vector Machine (SVM) Learning in Cancer Genomics. Cancer Genom. Proteom.
**2018**, 15, 41–51. [Google Scholar] [CrossRef] [Green Version] - Ghosh, T.; Zhang, W.; Ghosh, D.; Kechris, K. Predictive Modeling for Metabolomics Data. In Computational Methods and Data Analysis for Metabolomics; Li, S., Ed.; Springer: New York, NY, USA, 2020; pp. 313–336. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, C.; Xie, K.; Wang, J.; Pan, Z. Current State of Metabolomics Research in Meat Quality Analysis and Authentication. Foods
**2021**, 10, 2388. [Google Scholar] [CrossRef] [PubMed] - Broadhurst, D.I.; Kell, D.B. Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics
**2006**, 2, 171–196. [Google Scholar] [CrossRef] [Green Version] - Westerhuis, J.A.; Hoefsloot, H.C.J.; Smit, S.; Vis, D.J.; Smilde, A.K.; van Velzen, E.J.J.; van Duijnhoven, J.P.M.; van Dorsten, F.A. Assessment of PLSDA cross validation. Metabolomics
**2008**, 4, 81–89. [Google Scholar] [CrossRef] [Green Version] - Wehrens, R.; Putter, H.; Buydens, L.M. The bootstrap: A tutorial. Chemom. Intell. Lab. Syst.
**2000**, 54, 35–52. [Google Scholar] [CrossRef] - Wieder, C.; Frainay, C.; Poupin, N.; Rodríguez-Mier, P.; Vinson, F.; Cooke, J.; Lai, R.P.; Bundy, J.G.; Jourdan, F.; Ebbels, T. Pathway analysis in metabolomics: Recommendations for the use of over-representation analysis. PLoS Comput. Biol.
**2021**, 17, e1009105. [Google Scholar] [CrossRef] - Khatri, P.; Sirota, M.; Butte, A.J. Ten Years of Pathway Analysis: Current Approaches and Outstanding Challenges. PLoS Comput. Biol.
**2012**, 8, e1002375. [Google Scholar] [CrossRef] - Marco-Ramell, A.; Palau, M.; Alay, A.; Tulipani, S.; Urpi-Sarda, M.; Sánchez-Pla, A.; Andres-Lacueva, C. Evaluation and comparison of bioinformatic tools for the enrichment analysis of metabolomics data. BMC Bioinform.
**2018**, 19, 1. [Google Scholar] [CrossRef] - Karnovsky, A.; Li, S. Pathway Analysis for Targeted and Untargeted Metabolomics. Methods Mol. Biol.
**2020**, 2104, 387–400. [Google Scholar] - Nguyen, T.M.; Shafi, A.; Nguyen, T.; Draghici, S. Identifying significantly impacted pathways: A comprehensive review and assessment. Genome Biol.
**2019**, 20, 203. [Google Scholar] [CrossRef] - García-Campos, M.A.; Espinal-Enríquez, J.; Hernández-Lemus, E. Pathway Analysis: State of the Art. Front. Physiol.
**2015**, 6, 383. [Google Scholar] [CrossRef] [Green Version] - Liu, Y.; Xu, X.; Deng, L.; Cheng, K.K.; Xu, J.; Raftery, D.; Dong, J. A Novel Network Modelling for Metabolite Set Analysis: A Case Study on CRC Metabolomics. IEEE Access
**2020**, 8, 106425–106436. [Google Scholar] [CrossRef] - Mitrea, C.; Taghavi, Z.; Bokanizad, B.; Hanoudi, S.; Tagett, R.; Donato, M.; Voichita, C.; Draghici, S. Methods and approaches in the topology-based analysis of biological pathways. Front. Physiol.
**2013**, 4, 278. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Ihnatova, I.; Popovici, V.; Budinska, E. A critical comparison of topology-based pathway analysis methods. PLoS ONE
**2018**, 13, e0191154. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Ma, J.; Shojaie, A.; Michailidis, G. A comparative study of topology-based pathway enrichment analysis methods. BMC Bioinform.
**2019**, 20, 546. [Google Scholar] [CrossRef] [Green Version] - Chagoyen, M.; Pazos, F. Tools for the functional interpretation of metabolomic experiments. Brief. Bioinform.
**2012**, 14, 737–744. [Google Scholar] [CrossRef] [Green Version] - Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res.
**2008**, 37, 1–13. [Google Scholar] [CrossRef] [Green Version] - Emwas, A.H.M. The Strengths and Weaknesses of NMR Spectroscopy and Mass Spectrometry with Particular Focus on Metabolomics Research. In Methods in Molecular Biology; Springer: New York, NY, USA, 2015; pp. 161–193. [Google Scholar] [CrossRef]
- Pavlidis, P.; Qin, J.; Arango, V.; Mann, J.J.; Sibille, E. Using the Gene Ontology for Microarray Data Mining: A Comparison of Methods and Application to Age Effects in Human Prefrontal Cortex. Neurochem. Res.
**2004**, 29, 1213–1222. [Google Scholar] [CrossRef] - Al-Shahrour, F.; Díaz-Uriarte, R.; Dopazo, J. Discovering molecular functions significantly related to phenotypes by combining gene expression data and biological information. Bioinformatics
**2005**, 21, 2988–2993. [Google Scholar] [CrossRef] [Green Version] - Goeman, J.J.; van de Geer, S.A.; de Kort, F.; van Houwelingen, H.C. A global test for groups of genes: Testing association with a clinical outcome. Bioinformatics
**2004**, 20, 93–99. [Google Scholar] [CrossRef] [Green Version] - Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA
**2005**, 102, 15545–15550. [Google Scholar] [CrossRef] [Green Version] - Tian, L.; Greenberg, S.A.; Kong, S.W.; Altschuler, J.; Kohane, I.S.; Park, P.J. Discovering statistically significant pathways in expression profiling studies. Proc. Natl. Acad. Sci. USA
**2005**, 102, 13544–13549. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Kim, S.Y.; Volsky, D.J. PAGE: Parametric Analysis of Gene Set Enrichment. BMC Bioinform.
**2005**, 6, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Jiang, Z.; Gentleman, R. Extensions to gene set enrichment. Bioinformatics
**2006**, 23, 306–313. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Kong, S.W.; Pu, W.T.; Park, P.J. A multivariate approach for integrating genome-wide expression data and biological knowledge. Bioinformatics
**2006**, 22, 2373–2380. [Google Scholar] [CrossRef] - Barry, W.T.; Nobel, A.B.; Wright, F.A. Significance analysis of functional categories in gene expression studies: A structured permutation approach. Bioinformatics
**2005**, 21, 1943–1949. [Google Scholar] [CrossRef] - Efron, B.; Tibshirani, R. On testing the significance of sets of genes. Ann. Appl. Stat.
**2007**, 1, 107–129. [Google Scholar] [CrossRef] [Green Version] - Glazko, G.V.; Emmert-Streib, F. Unite and conquer: Univariate and multivariate approaches for finding differentially expressed gene sets. Bioinformatics
**2009**, 25, 2348–2354. [Google Scholar] [CrossRef] [Green Version] - Koza, J.R.; Mydlowec, W.; Lanza, G.; Yu, J.; Keane, M.A. Reverse Engineering of Metabolic Pathways From Observed Data Using Genetic Programming. Pac. Symp. Biocomput.
**2001**, 434–445. [Google Scholar] [CrossRef] [Green Version] - Schmidt, M.D.; Vallabhajosyula, R.R.; Jenkins, J.W.; Hood, J.E.; Soni, A.S.; Wikswo, J.P.; Lipson, H. Automated refinement and inference of analytical models for metabolic networks. Phys. Biol.
**2011**, 8, 055011. [Google Scholar] [CrossRef] - Qi, Q.; Li, J.; Cheng, J. Reconstruction of metabolic pathways by combining probabilistic graphical model-based and knowledge-based methods. BMC Proc.
**2014**, 8, S5. [Google Scholar] [CrossRef] [Green Version] - Xia, J.; Wishart, D.S. Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat. Protoc.
**2011**, 6, 743–760. [Google Scholar] [CrossRef] [PubMed] - Damiani, C.; Gaglio, D.; Sacco, E.; Alberghina, L.; Vanoni, M. Systems metabolomics: From metabolomic snapshots to design principles. Curr. Opin. Biotechnol.
**2020**, 63, 190–199. [Google Scholar] [CrossRef] - Kim, H.I.; Han, K.Y. Urban Flood Prediction Using Deep Neural Network with Data Augmentation. Water
**2020**, 12, 899. [Google Scholar] [CrossRef] [Green Version] - Sarker, I.H. Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN Comput. Sci.
**2021**, 2, 420. [Google Scholar] [CrossRef] [PubMed] - François-Lavet, V.; Henderson, P.; Islam, R.; Bellemare, M.G.; Pineau, J. An Introduction to Deep Reinforcement Learning. Found. Trends® Mach. Learn.
**2018**, 11, 219–354. [Google Scholar] [CrossRef] [Green Version] - Le, T.L.; Huynh, T.T.; Hong, S.K.; Lin, C.M. Hybrid Neural Network Cerebellar Model Articulation Controller Design for Non-linear Dynamic Time-Varying Plants. Front. Neurosci.
**2020**, 14, 695. [Google Scholar] [CrossRef] [PubMed] - Arabasadi, Z.; Alizadehsani, R.; Roshanzamir, M.; Moosaei, H.; Yarifard, A.A. Computer aided decision making for heart disease detection using hybrid neural network-Genetic algorithm. Comput. Methods Programs Biomed.
**2017**, 141, 19–26. [Google Scholar] [CrossRef] - Fan, X.; Wang, X.; Jiang, M.; Pei, Z.; Qiao, S. An Improved Stacked Autoencoder for Metabolomic Data Classification. Comput. Intell. Neurosci.
**2021**, 2021, 1051172. [Google Scholar] [CrossRef] - Zhu, L.; Spachos, P.; Pensini, E.; Plataniotis, K.N. Deep learning and machine vision for food processing: A survey. Curr. Res. Food Sci.
**2021**, 4, 233–249. [Google Scholar] [CrossRef] - Sakib, S.; Ahmed, N.; Kabir, A.J.; Ahmed, H. An Overview of Convolutional Neural Network: Its Architecture and Applications. Preprints
**2018**, 2018110546. [Google Scholar] [CrossRef] - Gil-Solsona, R.; Álvarez-Muñoz, D.; Serra-Compte, A.; Rodríguez-Mozaz, S. (Xeno)metabolomics for the evaluation of aquatic organism’s exposure to field contaminated water. Trends Environ. Anal. Chem.
**2021**, 31, e00132. [Google Scholar] [CrossRef] - Yang, B.; Zhang, C.; Cheng, S.; Li, G.; Griebel, J.; Neuhaus, J. Novel Metabolic Signatures of Prostate Cancer Revealed by 1H-NMR Metabolomics of Urine. Diagnostics
**2021**, 11, 149. [Google Scholar] [CrossRef] [PubMed] - Mandrone, M.; Chiocchio, I.; Barbanti, L.; Tomasi, P.; Tacchini, M.; Poli, F. Metabolomic Study of Sorghum (Sorghum bicolor) to Interpret Plant Behavior under Variable Field Conditions in View of Smart Agriculture Applications. J. Agric. Food Chem.
**2021**, 69, 1132–1145. [Google Scholar] [CrossRef] - Nunes, C.A.; Alvarenga, V.O.; de Souza Sant’Ana, A.; Santos, J.S.; Granato, D. The use of statistical software in food science and technology: Advantages, limitations and misuses. Food Res. Int.
**2015**, 75, 270–280. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Class, L.C.; Kuhnen, G.; Rohn, S.; Kuballa, J. Diving Deep into the Data: A Review of Deep Learning Approaches and Potential Applications in Foodomics. Foods
**2021**, 10, 1803. [Google Scholar] [CrossRef] [PubMed] - Greer, M.; Chen, C.; Mandal, S. Automated classification of food products using 2D low-field NMR. J. Magn. Reson.
**2018**, 294, 44–58. [Google Scholar] [CrossRef] [PubMed] - Song, Y.Q.; Venkataramanan, L.; Hürlimann, M.; Flaum, M.; Frulla, P.; Straley, C. T1–T2 Correlation Spectra Obtained Using a Fast Two-Dimensional Laplace Inversion. J. Magn. Reson.
**2002**, 154, 261–268. [Google Scholar] [CrossRef] - Date, Y.; Kikuchi, J. Application of a Deep Neural Network to Metabolomics Studies and Its Performance in Determining Important Variables. Anal. Chem.
**2018**, 90, 1805–1810. [Google Scholar] [CrossRef] - Wang, D.; Greenwood, P.; Klein, M.S. Deep Learning for Rapid Identification of Microbes Using Metabolomics Profiles. Metabolites
**2021**, 11, 863. [Google Scholar] [CrossRef] - Ebrahimnejad, H.; Ebrahimnejad, H.; Salajegheh, A.; Barghi, H. Use of Magnetic Resonance Imaging in Food Quality Control: A Review. J. Biomed. Phys. Eng.
**2018**, 8, 127–132. [Google Scholar] [CrossRef] - Caballero, D.; Pérez-Palacios, T.; Caro, A.; Amigo, J.M.; Dahl, A.B.; Ersbll, B.K.; Antequera, T. Prediction of pork quality parameters by applying fractals and data mining on MRI. Food Res. Int.
**2017**, 99, 739–747. [Google Scholar] [CrossRef] [PubMed] - Teimouri, N.; Omid, M.; Mollazade, K.; Mousazadeh, H.; Alimardani, R.; Karstoft, H. On-line separation and sorting of chicken portions using a robust vision-based intelligent modelling approach. Biosyst. Eng.
**2018**, 167, 8–20. [Google Scholar] [CrossRef] - Ribeiro, F.D.S.; Caliva, F.; Swainson, M.; Gudmundsson, K.; Leontidis, G.; Kollias, S. An adaptable deep learning system for optical character verification in retail food packaging. In Proceedings of the 2018 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS), Kallithea Rhodes, Greece, 25–27 May 2018. [Google Scholar] [CrossRef]
- Grapov, D.; Fahrmann, J.; Wanichthanarak, K.; Khoomrung, S. Rise of Deep Learning for Genomic, Proteomic, and Metabolomic Data Integration in Precision Medicine. OMICS J. Integr. Biol.
**2018**, 22, 630–636. [Google Scholar] [CrossRef] [Green Version] - Cao, C.; Liu, F.; Tan, H.; Song, D.; Shu, W.; Li, W.; Zhou, Y.; Bo, X.; Xie, Z. Deep Learning and Its Applications in Biomedicine. Genom. Proteom. Bioinform.
**2018**, 16, 17–32. [Google Scholar] [CrossRef] [PubMed] - Kim, H.W.; Zhang, C.; Cottrell, G.W.; Gerwick, W.H. SMART-Miner: A convolutional neural network-based metabolite identification from
^{1}H-^{13}C HSQC spectra. Magn. Reson. Chem.**2021**. [Google Scholar] [CrossRef] [PubMed] - Brougham, D.F.; Ivanova, G.; Gottschalk, M.; Collins, D.M.; Eustace, A.J.; O’Connor, R.; Havel, J. Artificial Neural Networks for Classification in Metabolomic Studies of Whole Cells Using1H Nuclear Magnetic Resonance. J. Biomed. Biotechnol.
**2011**, 2011, 158094. [Google Scholar] [CrossRef] [Green Version] - Di Donato, S.; Vignoli, A.; Biagioni, C.; Malorni, L.; Mori, E.; Tenori, L.; Calamai, V.; Parnofiello, A.; Di Pierro, G.; Migliaccio, I.; et al. A Serum Metabolomics Classifier Derived from Elderly Patients with Metastatic Colorectal Cancer Predicts Relapse in the Adjuvant Setting. Cancers
**2021**, 13, 2762. [Google Scholar] [CrossRef] - Encyclopedia of Spectroscopy and Spectrometry; Elsevier: Amsterdam, The Netherlands, 2017. [CrossRef]
- Peng, W.K.; Ng, T.T.; Loh, T.P. Machine learning assistive rapid, label-free molecular phenotyping of blood with two-dimensional NMR correlational spectroscopy. Commun. Biol.
**2020**, 3, 535. [Google Scholar] [CrossRef] - Corsaro, C.; Mallamace, D.; Neri, G.; Fazio, E. Hydrophilicity and hydrophobicity: Key aspects for biomedical and technological purposes. Phys. A Stat. Mech. Its Appl.
**2021**, 580, 126189. [Google Scholar] [CrossRef] - Chandra, K.; Al-Harthi, S.; Sukumaran, S.; Almulhim, F.; Emwas, A.H.; Atreya, H.S.; Jaremko, Ł.; Jaremko, M. NMR-based metabolomics with enhanced sensitivity. RSC Adv.
**2021**, 11, 8694–8700. [Google Scholar] [CrossRef] - Crook, A.A.; Powers, R. Quantitative NMR-Based Biomedical Metabolomics: Current Status and Applications. Molecules
**2020**, 25, 5128. [Google Scholar] [CrossRef] [PubMed] - Salmerón, A.M.; Tristán, A.I.; Abreu, A.C.; Fernández, I. Serum Colorectal Cancer Biomarkers Unraveled by NMR Metabolomics: Past, Present, and Future. Anal. Chem.
**2021**, 94, 417–430. [Google Scholar] [CrossRef] [PubMed] - Corsaro, C.; Cicero, N.; Mallamace, D.; Vasi, S.; Naccari, C.; Salvo, A.; Giofrè, S.V.; Dugo, G. HR-MAS and NMR towards Foodomics. Food Res. Int.
**2016**, 89, 1085–1094. [Google Scholar] [CrossRef] - Corsaro, C.; Fazio, E.; Mallamace, D. Direct Analysis in Foodomics: NMR approaches. In Comprehensive Foodomics; Elsevier: Amsterdam, The Netherlands, 2021; pp. 517–535. [Google Scholar] [CrossRef]
- Chen, D.; Wang, Z.; Guo, D.; Orekhov, V.; Qu, X. Review and Prospect: Deep Learning in Nuclear Magnetic Resonance Spectroscopy. Chem.—A Eur. J.
**2020**, 26, 10391–10401. [Google Scholar] [CrossRef] [Green Version] - Cobas, C. NMR signal processing, prediction, and structure verification with machine learning techniques. Magn. Reson. Chem.
**2020**, 58, 512–519. [Google Scholar] [CrossRef] - Helin, R.; Indahl, U.G.; Tomic, O.; Liland, K.H. On the possible benefits of deep learning for spectral preprocessing. J. Chemom.
**2022**, 26, e3374. [Google Scholar] [CrossRef] - Silverstein, R.M.; Webster, F.X.; Kiemle, D.J.; Bryce, D.L. Spectrometric Identification of Organic Compounds, 8th ed.; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Bisht, B.; Kumar, V.; Gururani, P.; Tomar, M.S.; Nanda, M.; Vlaskin, M.S.; Kumar, S.; Kurbatova, A. The potential of nuclear magnetic resonance (NMR) in metabolomics and lipidomics of microalgae- a review. Arch. Biochem. Biophys.
**2021**, 710, 108987. [Google Scholar] [CrossRef] - Holmes, E.; Nicholls, A.W.; Lindon, J.C.; Connor, S.C.; Connelly, J.C.; Haselden, J.N.; Damment, S.J.P.; Spraul, M.; Neidig, P.; Nicholson, J.K. Chemometric Models for Toxicity Classification Based on NMR Spectra of Biofluids. Chem. Res. Toxicol.
**2000**, 13, 471–478. [Google Scholar] [CrossRef] - Lindon, J.C.; Nicholson, J.K.; Holmes, E.; Everett, J.R. Metabonomics: Metabolic processes studied by NMR spectroscopy of biofluids. Concepts Magn. Reson.
**2000**, 12, 289–320. [Google Scholar] [CrossRef] - Giraudeau, P.; Silvestre, V.; Akoka, S. Optimizing water suppression for quantitative NMR-based metabolomics: A tutorial review. Metabolomics
**2015**, 11, 1041–1055. [Google Scholar] [CrossRef] - Kostidis, S.; Addie, R.D.; Morreau, H.; Mayboroda, O.A.; Giera, M. Quantitative NMR analysis of intra- and extracellular metabolism of mammalian cells: A tutorial. Anal. Chim. Acta
**2017**, 980, 1–24. [Google Scholar] [CrossRef] [PubMed] - Wider, G.; Dreier, L. Measuring Protein Concentrations by NMR Spectroscopy. J. Am. Chem. Soc.
**2006**, 128, 2571–2576. [Google Scholar] [CrossRef] [PubMed] - Akoka, S.; Barantin, L.; Trierweiler, M. Concentration Measurement by Proton NMR Using the ERETIC Method. Anal. Chem.
**1999**, 71, 2554–2557. [Google Scholar] [CrossRef] [PubMed] - Bharti, S.K.; Roy, R. Quantitative 1H NMR spectroscopy. TrAC Trends Anal. Chem.
**2012**, 35, 5–26. [Google Scholar] [CrossRef] - Farrant, R.D.; Hollerton, J.C.; Lynn, S.M.; Provera, S.; Sidebottom, P.J.; Upton, R.J. NMR quantification using an artificial signal. Magn. Reson. Chem.
**2010**, 48, 753–762. [Google Scholar] [CrossRef] - Crockford, D.J.; Keun, H.C.; Smith, L.M.; Holmes, E.; Nicholson, J.K. Curve-Fitting Method for Direct Quantitation of Compounds in Complex Biological Mixtures Using 1H NMR: Application in Metabonomic Toxicology Studies. Anal. Chem.
**2005**, 77, 4556–4562. [Google Scholar] [CrossRef] - Singh, A.; Prakash, V.; Gupta, N.; Kumar, A.; Kant, R.; Kumar, D. Serum Metabolic Disturbances in Lung Cancer Investigated through an Elaborative NMR-Based Serum Metabolomics Approach. ACS Omega
**2022**, 7, 5510–5520. [Google Scholar] [CrossRef]

**Figure 1.**Schematic workflow illustrating the steps of NMR based metabolomic studies coupled with chemometrics and pathway analysis. (1) Sample preparation and NMR tube filling (top left); (2) experimental parameters setting and data acquisition (top right); (3) data processing (middle left); (4) execution of multivariate statistical analysis (bottom right); (5) determination of metabolic pathways (bottom left). Some figures are reprinted from Refs. [22,23] under the terms of the CC-BY license.

**Figure 2.**Example plot with 3 variable axes in a n-dimensional variable space. The principal components PC1 and PC2 are reported.

**Figure 3.**An example of a dendrogram obtained by means of hierarchical cluster analysis performed on ${}^{1}$H NMR data on the plasma metabolome of 50 patients with early breast cancer. From the analysis, 3 different groups are classified: LR-1 (red), LR-2 (blue) and LR-3 (green). In this case, the Ward algorithm is adopted for measuring the distance. Figure reprinted from Ref. [48] under the terms of the CC-BY license.

**Figure 4.**An example of SOM model for studying renal cell carcinoma (RCC). (

**A**) SOM classification and discrimination between healthy subjects (left region) and RCC patients (right region) by considering 16 metabolites extracted by means of NMR spectroscopy on serum samples. (

**B**–

**Q**) Weight maps of the considered 16 metabolites. Darker colors correspond to higher SOM weights. Figure reprinted from Ref. [52] under the terms of the CC-BY license.

**Figure 5.**Scheme about merits and demerits of supervised methods, including filter, wrapper and embedded feature selection approaches.

**Figure 6.**ROC curves and corresponding AUC values for three classifiers: no predicting power (red dashed line with AUC = 0.5), perfect classifier (green dotted line with AUC = 1) and some predictive power (blue solid line with AUC∼0.8).

**Figure 7.**Example of decision tree with a different action corresponding to a different conditions set.

**Figure 8.**(

**a**) Bidimensional PLS-DA score plot of urine samples obtained from different hospitals. HB—Basurto Hospital, CRC—Cruces Hospital, HD—Donosti Hospital, TX—Txagorritxu Hospital. Figure reprinted from [67] under the terms of Creative Commons Attribution 4.0 International License. (

**b**) OPLS scheme.

**Figure 9.**Linear SVM model highlighting the classification of two classes (red and blue). Figure reprinted from Ref. [68] under the terms of the HighWire Press license.

**Figure 11.**A 3D Venn diagram illustrating the relation between ORA parameters (Equation (6)) in which N corresponds to the number of background compounds, n is the number of the measured metabolites, M is the number of background metabolites mapping the ith pathway, and k represents the overlap between M and n.

**Figure 13.**Pathway analysis performed on serum spectra recorded by ${}^{1}$H NMR allowing the identification of main metabolic pathways associated with non-small cell lung cancer. The larger the circle, the higher the impact. The color, from red to yellow, identifies the corresponding significance. Figure reprinted from [23] under the terms of the Creative Commons Attribution 4.0 International License.

**Figure 14.**Venn diagram illustrating that deep learning is the core of machine learning, which in turn is a technique within AI methods.

**Figure 15.**(

**a**) Example scheme of a deep neural networks, reprinted from Ref. [103] under the terms of the CC-BY license; (

**b**) operating principle of a single node.

**Figure 17.**Example of a convolutional neural network. Figure reprinted from Ref. [109] under the terms of CC BY-NC-ND 4.0 license.

**Figure 18.**(

**a**) Scheme of a RNN. (

**b**) Example of a BP network architecture. Figure reprinted from Ref. [109] under the terms of CC BY-NC-ND 4.0 license.

**Figure 19.**T${}_{1}$–T${}_{2}$ correlational maps classifying several kinds of oils: olive (blue), canola (orange), corn (yellow) and vegetable (purple) by using the two components used by the Gaussian fit of those peaks revealed by the inverse 2D Laplace transform. (

**a**,

**c**) report the first component of T${}_{1}$ versus the first and second components of T${}_{2}$, respectively. (

**b**,

**d**) report the second component of T${}_{1}$ versus the first and second components of T${}_{2}$, respectively. See main text and Ref. [116] for details. Figure reprinted with permission from Ref. [116]. Copyright 2018 Elsevier.

**Figure 20.**(

**a**) Comparison of the accuracy for the predictive power of the algorithms applied to classify cooking oil samples by employing three different classification training; (

**b**) accuracy of predictive power applied to soy sauce sample highlighting the effect of temperature. Figure adapted with permission from Ref. [116]. Copyright 2018 Elsevier.

**Figure 21.**Multilayer artificial neural network showing 4 input neurons, 2 hidden layers made of 3 neurons, and 2 output neurons of which the one corresponding to “Salmonella” shows the highest value, associated with the prediction performed by the used ANN. Figure reprinted from Ref. [119] under the terms of the CC-BY license.

**Figure 22.**Comparison of the different criteria adopted for the ANN training. (

**a**) “Greedy” learning; (

**b**) “jumping” out of a local tiny minimum; (

**c**) halt at large minima; (

**d**) halt at sharp growths in loss. Figure reprinted from Ref. [119] under the terms of the CC-BY license.

**Figure 23.**The multiomics method represented connects biological (i.e., signal inhibition, signaling network and biochemical feedback) with DL modeling (backpropagation, prediction, convolution, etc.), aiming to maximize the robustness of the approach for the identification of biochemical features referred to specific phenotypes. Figure reprinted from Ref. [124] under the terms of the Creative Commons Attribution Noncommercial License.

**Figure 24.**Overlay of experimental HSQC spectra from a metabolite mixture (black correlations) and the outcomes predicted by SMART-Miner (colored correlations). Figure reprinted with permission from Ref. [126]. Copyright 2021 Wiley Periodicals, Inc.

**Figure 25.**(

**A**) Example of ${}^{1}$H NMR spectrum for DLKP lung carcinoma cells. Labeled peak corresponds to (a) CH${}_{3}$, (b) CH${}_{2}$, (c) CH${}_{2}$CH=CH, (d) CH${}_{2}$COO, (e) =CHCH${}_{2}$CH=, and (f) HC=CH/CHOCOR. The highlighted intervals at 0.60–1.04 and 1.24–3.56 ppm were used for statistical analysis. (

**B**) PCA score plot including data from all four cell lines. (

**C**) Residual mean squares error vs. nodes number in the hidden layers, for the 3-layers (full symbols), and in the second (empty triangles) and third (empty circles) layer for the 4-layers networks. Figure reprinted from Ref. [127] under the terms of the Creative Commons Attribution License.

**Figure 26.**T${}_{1}$–T${}_{2}$ correlational maps in false colors of red blood cells at different conditions: oxygenated (

**a**), oxidized (

**b**), and deoxygenated (

**c**). Figure reprinted from Ref. [130] under the terms of the Creative Commons Attribution 4.0 International License.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Corsaro, C.; Vasi, S.; Neri, F.; Mezzasalma, A.M.; Neri, G.; Fazio, E.
NMR in Metabolomics: From Conventional Statistics to Machine Learning and Neural Network Approaches. *Appl. Sci.* **2022**, *12*, 2824.
https://doi.org/10.3390/app12062824

**AMA Style**

Corsaro C, Vasi S, Neri F, Mezzasalma AM, Neri G, Fazio E.
NMR in Metabolomics: From Conventional Statistics to Machine Learning and Neural Network Approaches. *Applied Sciences*. 2022; 12(6):2824.
https://doi.org/10.3390/app12062824

**Chicago/Turabian Style**

Corsaro, Carmelo, Sebastiano Vasi, Fortunato Neri, Angela Maria Mezzasalma, Giulia Neri, and Enza Fazio.
2022. "NMR in Metabolomics: From Conventional Statistics to Machine Learning and Neural Network Approaches" *Applied Sciences* 12, no. 6: 2824.
https://doi.org/10.3390/app12062824