Effect of Processing on the Nutritional Quality of Ilex paraguariensis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Determination of Agrochemical Residues
2.3. Microbiological Analysis
2.4. Evaluation of Nutritional Assets
2.5. Feedstuff In Vitro NDF Digestion Procedure
2.6. Statistical Analysis
3. Results and Discussion
3.1. Agrochemical Analysis
3.2. Microbiological Analysis
3.3. Nutritional Assets
3.4. Mineral Content
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CP | crude protein |
DM | dry matter |
SP | soluble protein |
ADICP | acid detergent insoluble CP |
NDICP | neutral detergent insoluble CP |
ADF | acid detergent fiber fraction |
NDF | neutral detergent fiber fraction |
aNDF | ash corrected NDF |
NFC | non-fibrous carbohydrates (sugars + starch) |
NDFD | fiber digestibility |
tNDFD | fiber digestibility determined by traditional method |
sNDFD | fiber digestibility determined by standard method |
uNDF t | non-digestible fiber at time t |
uNDF 240 | fraction of fiber cannot be digested |
iNDF | indigestible NDF (iNDF = uNDF 240) |
EE | content of fat-like compounds |
DE | digestible energy |
ME | metabolizable energy |
IP | Ilex paraguariensis A.St.-Hil. |
AMPA | aminomethylphosphonic acid |
FMOC-Cl | 9-fluorenylmethylchloroformate |
UHPLC-MS/MS | Chromatography Triple Quadrupole Mass Spectrometry |
SPE | solid phase extraction cleaning |
ICP-MS | Inductively Coupled Plasma Mass Spectrometer |
AAS | Atomic Absorption Spectrometry |
References
- Oliveira, Y.M.; Rotta, E. Área de distribuição natural da erva-mate (Ilex paraguarensis St. Hil). In Seminario Sobre Atualidades e Perspectivas Florestais. Silvicultura da Erva-Mate (Ilex paraguariensis); EMBRAPA-CNPF: Curitiba, Brazil, 1985; Volume 10, pp. 17–36. [Google Scholar]
- Reissmann, C.B.; Radomski, M.I.; de Quadros, B.R.M. Chemical composition of Ilex Paraguariensis St. Hil. under different management conditions in seven localities of Paraná State. Braz. Arch. Biol. Technol. 1999, 42, 2. [Google Scholar] [CrossRef] [Green Version]
- Heck, C.I.; de Mejia, E.G. Yerba Mate Tea (Ilex paraguariensis): A comprehensive review on chemistry, health implications, and technological considerations. J. Food. Sci. 2007, 72, R138–R151. [Google Scholar] [CrossRef] [PubMed]
- Navajas, P.; Mac Donnel, M. Caá Porá: El Espíritu de la Yerba Mate, Una Historia del Plata; Establecimiento Las Marías: Corrientes, Argentina, 2013. [Google Scholar]
- Samoggia, A.; Landuzzi, P.; Vicién, C.E. Market Expansion of Caffeine-Containing Products: Italian and Argentinian Yerba Mate Consumer Behavior and Health Perception. Int. J. Environ. Res. Public Health 2021, 18, 8117. [Google Scholar] [CrossRef] [PubMed]
- Lutomski, P.; Gozdziewska, M.; Florek-Luszczki, M. Health properties of Yerba Mate. Ann. Agric. Environ. Med. 2020, 27, 310–313. [Google Scholar] [CrossRef] [PubMed]
- Dallago, R.M.; Valduga, A.T.; Di Luccio, M.; Benin, S.; Tres, M.V. Analysis of volatile compounds of Ilex paraguariensis A.St.-Hil. and its main adulterating species Ilex theizans Mart. ex Reissek and Ilex dumosa Reissek. Ciênc. Agrotec. 2011, 35, 1166–1171. [Google Scholar] [CrossRef]
- Po, E.; Horsburgh, K.; Raadsma, H.W.; Celi, P. Yerba Mate (Ilex paraguarensis) as a novel feed supplement for growing lambs. Small. Rumin. Res. 2012, 106, 131–136. [Google Scholar] [CrossRef]
- Celi, P.; Raadsma, H.W. Effects of Yerba Mate (Ilex paraguariensis) supplementation on the productive performance of dairy cows during mid-lactation. Anim. Prod. Sci. 2010, 50, 339–344. [Google Scholar] [CrossRef]
- Po, E.; Xu, Z.; Celi, P. The Effect of Yerba Mate (Ilex paraguarensis) supplementation on the productive performance of dorper ewes and their progeny. Asian-Australas. J. Anim. Sci. 2012, 25, 945–949. [Google Scholar] [CrossRef] [Green Version]
- Celi, P.; Robinson, A. Effects of Yerba Mate (Ilex paraguariensis) supplementation on the performance of dairy calves. Anim. Prod. Sci. 2010, 50, 376–381. [Google Scholar] [CrossRef]
- Hartemink, E.; Giorgio, D.; Kaur, R.; Di Trana, A.; Celi, P. The effect of yerba mate (Ilex Paraguariensis) supplementation on nutrient degradability in dairy cows: An In sacco and In vitro study. Asian-Australas. J. Anim. Sci. 2015, 28, 1606–1613. [Google Scholar] [CrossRef] [Green Version]
- Barbato, O.; Holmes, B.; Filipescu, I.E.; Celi, P. Dietary supplementation of Yerba Mate (Ilex paraguariensis) during the dry period improves redox balance in lactating dairy cows. Antioxidants 2019, 8, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, C.E.F.; Scapinello, J.; Bohn, A.; Boligon, A.A.; Athayde, M.L.; Magro, J.D.; Palliga, M.; Oliveira, J.V.; Tres, M.V. Phytochemical profile, antioxidant and antimicrobial activity of extracts obtained from erva-mate (Ilex paraguariensis) fruit using compressed propane and supercritical CO2. J. Food Sci. Technol. 2017, 54, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Weibel, M.I.; Badano, J.M.; Rintoul, I. Technological evolution of hormone delivery systems for estrous synchronization in cattle. Int. J. Livest. Res. 2014, 4, 20–40. [Google Scholar] [CrossRef] [Green Version]
- Isolabella, S.; Cogoi, L.; Lopez, P.; Anesini, C.; Ferraro, G.; Filip, R. Study of the bioactive compounds variation during yerba mate (Ilex paraguariensis) processing. Food Chem. 2010, 122, 695–699. [Google Scholar] [CrossRef]
- Lewicki, P.P. Design of hot air drying for better foods. Trends Food Sci. Technol. 2006, 17, 153–163. [Google Scholar] [CrossRef]
- Passardi, R.L.; Schvezov, C.E.; Schmalko, M.E.; Gonzalez, A.D. Drying of Ilex paraguariensis Saint Hilaire by microwave radiation. Dry. Technol. 2006, 24, 1437–1442. [Google Scholar] [CrossRef]
- Westphalen, D.J.; Angelo, A.C.; Rossa, U.B.; Bognola, I.A.; Martins, C.E.N. Impact of different silvicultural techniques on the productive efficiency of Ilex paraguariensis A. St. Hill. Agrofor. Syst. 2020, 94, 791–798. [Google Scholar] [CrossRef]
- Barbosa, J.Z.; Motta, A.C.V.; Consalter, R.; Poggere, G.C.; Santin, D.; Wendling, I. Plant growth, nutrients and potentially toxic elements in leaves of yerba mate clones in response to phosphorus in acid soils. An. Acad. Bras. Cienc. 2018, 90, 557–571. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.F.R.; Helena Abreu, H.; Silva, A.M.S.; Cardoso, S.M. Effect of oven-drying on the recovery of valuable compounds from Ulva rigida, Gracilariasp. and Fucus vesiculosus. Mar. Drugs 2019, 17, 90. [Google Scholar] [CrossRef] [Green Version]
- Chan, J.C.C.; Cheung, P.C.K.; Ang, P.O. Comparative studies on the effect of three drying methods on the nutritional composition of seaweed Sargassum hemiphyllum (Turn.) C. Ag. J. Agric. Food Chem. 1997, 45, 3056–3059. [Google Scholar] [CrossRef]
- Dauterman, W.C.; Viado, G.B.; Casida, J.E.; O’Brien, R.D. Insecticide residues, persistence of dimethoate and metabolites following foliar application to plants. J. Agric. Food Chem. 1960, 8, 115–119. [Google Scholar] [CrossRef]
- Green, J.M. Review of glyphosate and als-inhibiting herbicide crop resistance and resistant weed management. Weed Technol. 2007, 21, 547–558. [Google Scholar] [CrossRef]
- Grandcoin, A.; Piel, S.; Baures, E. AminoMethylPhosphonic acid (AMPA) in natural waters: Its sources, behavior and environmental fate. Water Res. 2017, 117, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Myers, J.P.; Antoniou, M.N.; Blumberg, B.; Carroll, L.; Colborn, T.; Everett, L.G.; Hansen, M.; Landrigan, P.J.; Lanphear, B.P.; Mesnage, R.; et al. Concerns over use of glyphosate-based herbicides and risks associated with exposures: A consensus statement. Environ. Health 2016, 15, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takano, H.K.; Dayan, F.E. Glufosinate-ammonium: A review of the current state of knowledge. Pest. Manag. Sci. 2020, 76, 3911–3925. [Google Scholar] [CrossRef]
- Schmalko, M.E.; Laura, A.; Ramallo, L.A.; Ferreira, D.; Berlingheri, R.D. Dimethoate degradation in plants and during processing of yerba maté leaves. Braz. Arch. Biol. Technol. 2002, 45, 419–422. [Google Scholar] [CrossRef] [Green Version]
- Demonte, L.D.; Michlig, N.; Gaggiotti, M.; Adam, C.G.; Beldomenico, H.R.; Repetti, M.R. Determination of glyphosate, AMPA and glufosinate in dairy farm water from Argentina using a simplified UHPLC-MS/MS method. Sci. Total Environ. 2018, 645, 34–43. [Google Scholar] [CrossRef]
- Goeser, J. The anti-nutrition factor in dairy cattle. Progress. Dairym. 2015, 16, 116–118. [Google Scholar]
- Beachat, L.R.; Cousin, M.A. Yeasts and molds. In Compendium of Methods for the Microbiological of Foods, 4th ed.; Frances Pouch Downes Keith Ito: Washington, DC, USA, 2001; pp. 209–215. [Google Scholar]
- Morton, R.D. Aerobic Plate Count. In Compendium of Methods for the Microbiological of Foods, 4th ed.; Frances Pouch Downes Keith Ito: Washington DC, USA, 2001; pp. 63–65. [Google Scholar]
- GAFTA 4. Available online: www.gafta.com/write/MediaUploads/Contracts/2010/4.0_CRUDE_PROTEIN.pdf (accessed on 16 November 2021).
- ISO 5983. Available online: www.iso.org/standard/39160.html (accessed on 17 November 2021).
- ISO 13906. Available online: www.iso.org/standard/43032.html (accessed on 17 November 2021).
- ISO 16472. Available online: www.iso.org/standard/37898.html (accessed on 17 November 2021).
- Van Soest, P.J. Use of detergents in the analysis of fibrous feeds: 2. A rapid method for the determination of fiber and lignin. J. Assoc. Off. Anal. Chem. 1990, 73, 491–497. [Google Scholar] [CrossRef]
- Goering, H.; Van Soest, P.J. Forage fiber analysis: Apparatus, reagents, procedures and some applications. In Agricultural Handbook, 1st ed.; U.S.D.A. Agricultural Research Service: Washington, DC, USA, 1970; Volume 379, pp. 76–80. [Google Scholar]
- Goeser, J.P.; Combs, D.K. An alternative method to assess 24-h ruminal in vitro NDF digestibility. J. Dairy Sci. 2009, 92, 3833–3841. [Google Scholar] [CrossRef] [Green Version]
- Golder, H.M.; Celi, P.; Lean, I.J. Ruminal acidosis in a 21-month-old Holstein heifer. Can. Vet. J. 2014, 55, 559–564. [Google Scholar] [PubMed]
- GAFTA 11. Available online: www.gafta.com/write/MediaUploads/Contracts/2014/method_11.0_2014.pdf (accessed on 16 November 2021).
- ISO 5984. Available online: www.iso.org/standard/37272.html (accessed on 17 November 2021).
- GAFTA 3. Available online: www.gafta.com/write/MediaUploads/Contracts/2014/method_3.0_2014.pdf (accessed on 16 November 2021).
- ISO 6492. Available online: www.iso.org/standard/12865.html (accessed on 17 November 2021).
- GAFTA 14. Available online: www.gafta.com/write/MediaUploads/Contracts/2012/14.0_SAND_ONLY_(SAND_WITHOUT_SILICA).pdf (accessed on 16 November 2021).
- ISO 6869. Available online: www.iso.org/standard/33707.html (accessed on 17 November 2021).
- AOAC 965.17. Available online: www.eoma.aoac.org/methods/info.asp?ID=33502 (accessed on 16 November 2021).
- Weiss, W.P.; Conrad, H.R.; Pierre, N.R.S. A theoretically based model for predicting total digestible nutrient values of forages and concentrates. Anim. Feed Sci. Technol. 1992, 39, 95–110. [Google Scholar] [CrossRef]
- Nutrient Requirements of Dairy Cattle, 7th ed.; The National Academies Press: Washington, DC, USA, 2001. [CrossRef] [Green Version]
- Pozebon, D.; Dressler, V.L.; Marcelo, M.C.A.; Oliveira, T.C.; Ferrao, M.F. Toxic and nutrient elements in yerba mate (Ilex paraguariensis). Food Addit. Part B Surveill. 2015, 8, 215–220. [Google Scholar] [CrossRef]
- Goeser, J.P.; Hoffman, P.C.; Combs, D.K. Modification of a rumen fluid priming technique for measuring in vitro NDF digestibility. J. Dairy Sci. 2009, 92, 3842–3848. [Google Scholar] [CrossRef] [PubMed]
- Liane, M.V.; Barboza-Liane, M.V.; Waszczynsky, N.J.; de Freitas, R.J.S. Microbiological evaluation of yerba-maté (Ilex paraguariensis St. Hil.). Rev. Inst. Adolfo Lutz. 2006, 65, 123–126. [Google Scholar]
- Albiero, G.; da Silva, P.V.; da Costa, M. Sanitary quality and diversity of culturable bacteria and yeasts in processed and in natura yerba mate (Ilex paraguariensis A.St.-Hil.). R. Bras. Bioci. 2015, 13, 90–95. [Google Scholar]
- Norma IRAM 20517. In Yerba Mate Canchada y Yerba Mate Elaborada, 1st ed.; Análisis Microbiológicos; Instituto Argentino de Racionalización de los Materiales: Buenos Aires, Argentina, 2007.
- INTA. 2007. Available online: Rafaela.inta.gov.ar/ingo/documentos/nutricion_valordealimentos.htm (accessed on 1 January 2020).
- Goeser, J.P. Improvement of Rumen In Vitro NDF Digestion Techniques and Data Analysis. Ph.D. Thesis, University of Wisconsin, Madison, WI, USA, 2008. [Google Scholar]
- Fernandez Mayer, A.E. Producción de Carne y Leche Bovina en Sistemas Silvopastoriles, 1st ed.; Bordenave, Ediciones INTA: Buenos Aires, Argentina, 2017. [Google Scholar]
- Sniffen, C.J.; O’Connor, J.D.; Van Soest, P.J.; Fox, D.G.; Russel, J.B. A net carbohydrate and protein system for evaluating cattle diets: II Carbohydrate and protein availability. J. Anim. Sci. 1992, 70, 3562–3577. [Google Scholar] [CrossRef]
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Cornell University Press: Ithaca, NY, USA, 1994. [Google Scholar]
- Mufarrege, D.J. Los Minerales en la Alimentación de Vacunos Para Carne en la Argentina, 1st ed.; E.E.A. INTA Mercedes: Corrientes, Argentina, 1999. [Google Scholar]
- Sutton, J.D.; Alderman, G. The energy and protein requirements of pregnant and lactating dairy goats: The agriculture and food research council report. Livest. Prod. Sci. 2000, 64, 3–8. [Google Scholar] [CrossRef]
- Pasinato, A.; Grigioni, G.; Alende, A. Producción Bovinos Para Carne (2013–2017), 1st ed.; Ediciones INTA: La Pampa, Argentina, 2007. [Google Scholar]
- Baspinar, N.; Basoglu, A.; Semacan, A.; Gulersoy, E. Short term effects of dietary boron on mineral status in dairy cows. Int. J. Environ. Agric. Res. (IJOEAR) 2017, 3, 65–70. [Google Scholar] [CrossRef]
Species | S1 | S2 | S3 |
---|---|---|---|
Yeast [cfu/g] | 500 | Not detected | 200 |
Mold [cfu/g] | 600 | 20 | 500 |
Enterobacteria [cfu/g] | 800 | 100 | 600 |
Nutritional Assets | S1 | S2 | S3 | |
---|---|---|---|---|
Dry material | [%] | 56.30 | 93.49 | 93.74 |
Humidity | [%] | 43.70 | 6.51 | 6.26 |
Crude Protein | [% DM] | 22.07 | 11.63 | 10.88 |
Crude Protein Available | [%CP] | 19.06 | 10.78 | 10.03 |
ADICP | [% DM] | 3.01 | 0.85 | 0.85 |
NDICP | [% DM] | 7.51 | 1.38 | 1.54 |
ADF | [% DM] | 27.33 | 27.22 | 29.61 |
aNDF | [% DM] | 39.76 | 34.55 | 37.82 |
Fat (EE) | [% DM] | 0.28 | 4.17 | 2.77 |
Ash | [% DM] | 7.95 | 6.08 | 6.16 |
Lignin | [% DM] | 25.24 | 11.17 | 15.98 |
Starch | [% DM] | 1.78 | 2.94 | 2.44 |
NDFD 30% NDF | [% aNDF] * | 6.82 | - | - |
uNDF 30 | [% DM] * | 41.47 | - | - |
uNDF30om | [% DM] * | 37.36 | - | - |
NFC | [% DM] | 37.45 | 44.95 | 43.91 |
DCAD | [meq/100 g] | 14.77 | 22.79 | 24.79 |
NRC 2001 Energy Calculations Dairy | ||||
NDT 1X | [% DM] | 49.23 | 63.35 | 56.33 |
ENL 3X | [Mcal/kg] | 1.144 | 1.423 | 1.267 |
ENG | [Mcal/kg] | 0.360 | 0.901 | 0.642 |
ENM | [Mcal/kg] | 0.903 | 1.493 | 1.207 |
ME 3X NRC2001 | [Mcal/kg] | 1.897 | 2.287 | 2.073 |
ME 1X NRC2001 | [Mcal/kg] | 1.897 | 2.386 | 2.073 |
Elements | S1 | S2 | S3 | NRC | MG | Mineral Content in Common Feed Supplements | |
---|---|---|---|---|---|---|---|
Ca | [%] | 0.58 | 0.63 | 0.75 | 0.43–0.66 | 0.34 | RGT, corn, sunflower, flax: 0.06–0.38 |
P | [%] | 0.11 | 0.12 | 0.13 | 0.28–0.41 | 0.14 | RGT: 0.26, corn: 0.22 |
Mg | [%] | 0.62 | 0.45 | 0.49 | 0.20–0.25 | 0.26 | RGT: 0.16, corn in plant: 0.14 |
K | [%] | 1.62 | 1.31 | 1.43 | 0.90–1.00 | 0.17 | barley, sunflower, sorghum, wheat: 0.76–1.08 |
Na | [%] | ND | ND | ND | ~0.18 | 0.04 | Corn: 0.06 |
S | [%] | 0.20 | 0.10 | 0.12 | ~0.20 | - | RGT: 0.15, corn in plant: 0.20 |
Cl | [%] | 0.52 | 0.16 | 0.16 | ~0.20 | - | Plant matter: 0.2–2 |
Zn | [ppm] | 64 | 64 | 72 | 40 | 34 | Corn: 46 |
Mn | [ppm] | 3329 | 1861 | 1599 | 40 | 467 | Corn: 10 |
Cu | [ppm] | 11 | 8 | 9 | 10 | 7 | Corn: 13 |
Fe | [ppm] | 199 | 299 | 264 | 50 | 695 | Corn: 48 |
Al | [ppm] | 440 | 422 | 413 | - | - | Plant matter: 1–500 |
B | [ppm] | 71 | 63 | 71 | - | - | Corn: 5, corn in plant: 10–20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramirez, M.R.; Mohamad, L.; Alarcon-Segovia, L.C.; Rintoul, I. Effect of Processing on the Nutritional Quality of Ilex paraguariensis. Appl. Sci. 2022, 12, 2487. https://doi.org/10.3390/app12052487
Ramirez MR, Mohamad L, Alarcon-Segovia LC, Rintoul I. Effect of Processing on the Nutritional Quality of Ilex paraguariensis. Applied Sciences. 2022; 12(5):2487. https://doi.org/10.3390/app12052487
Chicago/Turabian StyleRamirez, Maria Rosana, Leandro Mohamad, Lilian Celeste Alarcon-Segovia, and Ignacio Rintoul. 2022. "Effect of Processing on the Nutritional Quality of Ilex paraguariensis" Applied Sciences 12, no. 5: 2487. https://doi.org/10.3390/app12052487
APA StyleRamirez, M. R., Mohamad, L., Alarcon-Segovia, L. C., & Rintoul, I. (2022). Effect of Processing on the Nutritional Quality of Ilex paraguariensis. Applied Sciences, 12(5), 2487. https://doi.org/10.3390/app12052487