The Effect of Marketing Activities on Web Search Volume: An Empirical Analysis of Chinese Film Industry Data
Abstract
:1. Introduction
2. Literature Review
2.1. News Media
2.2. Social Network Marketing
2.3. Film Stars
2.4. The Dynamic Effect of Web Search Generation
3. Data and Model
3.1. Data
3.2. Dependent Variable
3.3. Independent Variable
3.4. A Lagged Dependent Variable and Control Variables
3.5. Empirical Model Specification
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gruner, R.L.; Vomberg, A.; Homburg, C.; Lukas, B.A. Supporting New Product Launches With Social Media Communication and Online Advertising: Sales Volume and Profit Implications. J. Prod. Innov. Manag. 2018, 36, 172–195. [Google Scholar] [CrossRef]
- Kulkarni, G.; Kannan, P.; Moe, W. Using online search data to forecast new product sales. Decis. Support Syst. 2012, 52, 604–611. [Google Scholar] [CrossRef] [Green Version]
- Hand, C.; Judge, G. Searching for the picture: Forecasting UK cinema admissions using Google Trends data. Appl. Econ. Lett. 2012, 19, 1051–1055. [Google Scholar] [CrossRef] [Green Version]
- Spink, A.; Jansen, B.J. Web Search: Public Searching of the Web; Springer Science & Business Media: Dordrecht, The Netherland, 2006; Volume 6. [Google Scholar]
- Du, R.Y.; Kamakura, W.A. Quantitative Trendspotting. J. Mark. Res. 2012, 49, 514–536. [Google Scholar] [CrossRef]
- Eliashberg, J.; Elberse, A.; Leenders, M.A. The Motion Picture Industry: Critical Issues in Practice, Current Research, and New Research Directions. Mark. Sci. 2006, 25, 638–661. [Google Scholar] [CrossRef]
- Ginsberg, J.; Mohebbi, M.H.; Patel, R.S.; Brammer, L.; Smolinski, M.S.; Brilliant, L. Detecting influenza epidemics using search engine query data. Nature 2009, 457, 1012–1014. [Google Scholar] [CrossRef]
- Askitas, N.; Zimmermann, K.F. Google Econometrics and Unemployment Forecasting. Ger. Counc. Soc. Econ. Data (RatSWD) Res. Notes 2009, 55, 107–120. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Brynjolfsson, E. The future of prediction: How Google searches foreshadow housing prices and quantities. ICIS 2009 Proc. 2009, 147. [Google Scholar]
- Vosen, S.; Schmidt, T. Forecasting private consumption: Survey-based indicators vs. Google trends. J. Forecast. 2011, 30, 565–578. [Google Scholar] [CrossRef] [Green Version]
- Da, Z.; Engelberg, J.; Gao, P. In search of attention. J. Financ. 2011, 66, 1461–1499. [Google Scholar] [CrossRef]
- Choi, H.; Varian, H. Predicting the Present with Google Trends. Econ. Rec. 2012, 88, 2–9. [Google Scholar] [CrossRef]
- Tana, J.; Eirola, E.; Nylund, M. When is prime-time in streaming media platforms and video-on-demands services? New media consumption patterns and real-time economy. Eur. J. Commun. 2019, 35, 108–125. [Google Scholar] [CrossRef]
- Ratchford, B.T.; Lee, M.-S.; Talukdar, D. The Impact of the Internet on Information Search for Automobiles. J. Mark. Res. 2003, 40, 193–209. [Google Scholar] [CrossRef]
- Park, Y.; Polpanumas, C.; Yoon, Y. Loss aversion and reference dependence effect of online word of mouth (WOM) via Twitter on movie goers’ decisions? J. Advert. Res. 2017, 57, 144–158. [Google Scholar]
- Eliashberg, J.; Shugan, S.M. Film critics: Influencers or predictors? J. Mark. 1997, 61, 68–78. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Bleske, G.L. Horse-Race Polls and Audience Issue Learning. Harv. Int. J. Press. 1998, 3, 13–34. [Google Scholar] [CrossRef]
- Lindquist, J.D.; Sirgy, M.J. Shopper, Buyer, and Consumer Behavior: Theory, Marketing Applications and Public Policy Implications; Atomic Dog/Cengage Learning: Cincinnati, OH, USA, 2009. [Google Scholar]
- Stammerjohan, C.; Wood, C.; Chang, Y.; Thorson, E. An empirical investigation of the interaction between publicity, advertising, and previous brand attitudes and knowledge. J. Advert. 2005, 34, 55–67. [Google Scholar] [CrossRef]
- Asur, S.; Huberman, B.A. Predicting the future with social media. In Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Toronto, ON, Canada, 31 August–3 September 2010; Volume 1, pp. 492–499. [Google Scholar]
- Ravid, A.S. Information, blockbusters and stars: A study of the film industry. J. Bus. 1999, 72, 463–492. [Google Scholar] [CrossRef] [Green Version]
- Rosen, S. The economics of superstars. Am. Econ. Rev. 1981, 71, 845–858. [Google Scholar]
- Karniouchina, E.V. Impact of star and movie buzz on motion picture distribution and box office revenue. Int. J. Res. Mark. 2011, 28, 62–74. [Google Scholar] [CrossRef]
- Joshi, A. Movie Stars and the Volatility of Movie Revenues. J. Media Econ. 2015, 28, 246–267. [Google Scholar] [CrossRef]
- Raufeisen, X.; Wulf, L.; Köcher, S.; Faupel, U.; Holzmüller, H.H. Spillover effects in marketing: Integrating core research domains. AMS Rev. 2019, 9, 249–267. [Google Scholar] [CrossRef]
- Baltagi, B. Econometric Analysis of Panel Data, 3th ed.; Wiley: Chichester, UK, 2008. [Google Scholar]
- Cameron, A.C.; Trivedi, P.K. Microeconometrics: Methods and Applications; Cambridge University Press: Combridge, UK, 2005. [Google Scholar]
- McCombs, M.E.; Shaw, D.L. The Agenda-Setting Function of Mass Media. Public Opin. Q. 1972, 36, 176–187. [Google Scholar] [CrossRef]
- Chaffee, S.H.; Schleuder, J. Measurement and Effects of Attention to Media News. Hum. Commun. Res. 1986, 13, 76–107. [Google Scholar] [CrossRef]
- Kalaitzandonakes, N.; Marks, L.A.; Vickner, S.S. Media Coverage of Biotech Foods and Influence on Consumer Choice. Am. J. Agric. Econ. 2004, 86, 1238–1246. [Google Scholar] [CrossRef]
- Feldman, L. Partisan Differences in Opinionated News Perceptions: A Test of the Hostile Media Effect. Political Behav. 2011, 33, 407–432. [Google Scholar] [CrossRef]
- Andrew, B. Political Journalism Represented by Headline News: Canadian Public and Commercial Media Compared. Can. J. Political Sci. 2013, 46, 455–478. [Google Scholar] [CrossRef]
- Guhl, D.; Von Mohrenfels, H.W.; Abshagen, J.; Klapper, D. Measuring Marketing Success: Estimating the Effect ofSocial Media and TV Advertising on Brand Attention. Mark. ZFP 2016, 38, 44–58. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.J.; Zhang, F.; Yoon, Y. The external effect of a migrated star player on domestic sports league: An empirical analysis of three Asian leagues—Japan, Korea and Taiwan. Int. J. Sports Mark. Spons. 2021, 22, 262–292. [Google Scholar] [CrossRef]
- Yoon, Y.; Polpanumas, C.; Park, Y.J. The impact of word of mouth via Twitter on moviegoers’ decisions and film revenues: Revisiting prospect theory: How WOM about movies drives loss-aversion and reference-dependence behaviors. J. Advert. Res. 2017, 57, 144–158. [Google Scholar] [CrossRef]
- Shen, Z. A persuasive eWOM model for increasing consumer engagement on social media: Evidence from Irish fashion micro-influencers. J. Res. Interact. Mark. 2021, 15, 181–199. [Google Scholar] [CrossRef]
- Zhang, M.; Lu, J.; Hallman, W.K. Sharing on Facebook and Face-to-Face What Others Do or Approve: Word-of-Mouth Driven by Social Norms. Front. Psychol. 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Ferrell, O.C.; Hartline, M. Marketing Strategy, Text and Cases; Cengage Learning: Mason, OH, USA, 2013. [Google Scholar]
- Godey, B.; Manthiou, A.; Pederzoli, D.; Rokka, J.; Aiello, G.; Donvito, R.; Singh, R. Social media marketing efforts of luxury brands: Influence on brand equity and consumer behavior. J. Bus. Res. 2016, 69, 5833–5841. [Google Scholar] [CrossRef]
- Jansen, B.J.; Zhang, M.; Sobel, K.; Chowdury, A. Twitter power: Tweets as electronic word of mouth. J. Am. Soc. Inf. Sci. Technol. 2009, 60, 2169–2188. [Google Scholar] [CrossRef]
- Dahka, Z.Y.; Hajiheydari, N.; Rouhani, S. User response to e-WOM in social networks: How to predict a content influence in Twitter. Int. J. Internet Mark. Advert. 2020, 14, 91. [Google Scholar] [CrossRef]
- Liu, J.; Toubia, O.; Hill, S. Content-Based Model of Web Search Behavior: An Application to TV Show Search. Manag. Sci. 2021, 67, 6378–6398. [Google Scholar] [CrossRef]
- Huang, P.; Lurie, N.H.; Mitra, S. Searching for Experience on the Web: An Empirical Examination of Consumer Behavior for Search and Experience Goods. J. Mark. 2009, 73, 55–69. [Google Scholar] [CrossRef] [Green Version]
- Yoon, Y.; Fu, Y.; Joo, J. Unintended CSR violation informed by online recommendation. Sustainability 2021, 13, 4053. [Google Scholar] [CrossRef]
- Jung, B.; Joo, J. Blind Obedience to Environmental Friendliness: The Goal Will Set Us Free. Sustainability 2021, 13, 12322. [Google Scholar] [CrossRef]
- Park, Y.J.; Joo, J.; Polpanumas, C.; Yoon, Y. “Worse Than What I Read?” The External Effect of Review Ratings on the Online Review Generation Process: An Empirical Analysis of Multiple Product Categories Using Amazon.com Review Data. Sustainability 2021, 13, 10912. [Google Scholar] [CrossRef]
- Hwang, S.; Park, H.; Oh, K.; Hwang, S.; Joo, J. Rethinking a Designers’ Rule of Thumb: Influence of Information Seeking and Consumption Goals on Mobile Commerce Interface Design. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 1631–1647. [Google Scholar] [CrossRef]
Variable | Min | Mean | s.d. | Max | Obs |
---|---|---|---|---|---|
Web Search Volume (WSV) | 0 | 20,173 | 77,426 | 2,743,351 | 6594 |
News Media (NWM) | 0 | 52 | 137 | 3432 | 6594 |
Social Network (SNM) | 0 | 124,340 | 1,898,231 | 7.81 × 107 | 6594 |
Number of Awards won by Actor or Actress (PSP) | 0 | 1.44 | 2.50 | 21 | 6594 |
Number of Fans of Actor or Actress (NSP) | 0 | 31,061 | 40,366 | 202,868 | 6594 |
WSV | NWM | SNM | PSP | NSP | |
---|---|---|---|---|---|
WSV | 1 | ||||
NWM | 0.417 | 1 | |||
SNM | 0.013 | 0.011 | 1 | ||
PSP | 0.006 | 0.077 | −0.011 | 1 | |
NSP | 0.245 | 0.274 | −0.032 | 0.161 | 1 |
Coefficient Estimates | Standard Error | p-Value | |
---|---|---|---|
Constant | −9978.64 *** | 2234.36 | 0.000 |
0.343 *** | 0.0001 | 0.000 | |
10.346 *** | 0.0297 | 0.000 | |
0.565 *** | 0.0006 | 0.000 | |
−146.90 | 684.75 | 0.830 | |
0.041 *** | 0.016 | 0.011 | |
347.24 | 981.74 | 0.724 | |
4564.11 *** | 923.80 | 0.000 | |
4844.28 * | 2534.04 | 0.056 | |
2242.35 * | 1157.86 | 0.053 | |
119.85 | 1501.43 | 0.936 | |
1843.57 | 1627.04 | 0.257 | |
245.56 | 1298.53 | 0.850 | |
Genre (Documentary) | 361.42 | 1066.78 | 0.735 |
3D | 2708.74 | 1827.19 | 0.138 |
IP | 5670.06 *** | 1349.61 | 0.000 |
January | 8119.13 *** | 1368.28 | 0.000 |
March | 3930.59 * | 2001.42 | 0.050 |
April | 716.79 *** | 1442.36 | 0.619 |
May | 6172.33 *** | 2116.58 | 0.004 |
June | 4175.15 | 2585.75 | 0.106 |
July | 2834.88 * | 1624.05 | 0.081 |
August | 3361.38 * | 1900.21 | 0.077 |
September | 3058.37 *** | 1142.65 | 0.007 |
October | 1460.31 | 1836.80 | 0.427 |
November | 0.054 | 0.071 | 0.444 |
December | 0.087 | 0.223 | 0.696 |
NWM | SNM | NSP | |
---|---|---|---|
Elasticity of Web Search Generation | 0.008 | 1.018 | 0.018 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, Y.; Deng, R.; Joo, J. The Effect of Marketing Activities on Web Search Volume: An Empirical Analysis of Chinese Film Industry Data. Appl. Sci. 2022, 12, 2143. https://doi.org/10.3390/app12042143
Yoon Y, Deng R, Joo J. The Effect of Marketing Activities on Web Search Volume: An Empirical Analysis of Chinese Film Industry Data. Applied Sciences. 2022; 12(4):2143. https://doi.org/10.3390/app12042143
Chicago/Turabian StyleYoon, Yeujun, Rongchao Deng, and Jaewoo Joo. 2022. "The Effect of Marketing Activities on Web Search Volume: An Empirical Analysis of Chinese Film Industry Data" Applied Sciences 12, no. 4: 2143. https://doi.org/10.3390/app12042143
APA StyleYoon, Y., Deng, R., & Joo, J. (2022). The Effect of Marketing Activities on Web Search Volume: An Empirical Analysis of Chinese Film Industry Data. Applied Sciences, 12(4), 2143. https://doi.org/10.3390/app12042143