Towards a Hybrid Machine Learning Model for Intelligent Cyber Threat Identification in Smart City Environments
Abstract
:1. Introduction
- We propose a hybrid DL model that consists of QRNN and CNN to improve cyber threat analysis accuracy, lower FPR, and provide real-time analysis.
- We evaluated our proposed model on two datasets that were simulated to represent a realistic IoT environment.
2. Related Work
3. Proposed Model
4. Implementation
4.1. Datasets
4.1.1. BoT-IoT Dataset
4.1.2. TON_IoT Dataset
4.2. Data Preprocessing
4.3. Model Implementation
4.4. Evaluation Tools and Metrics
5. Results and Discussion
5.1. Results and Analysis
5.2. Theoretical and Practical Implications
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- AlZaabi, K.A.J.A. The Value of Intelligent Cybersecurity Strategies for Dubai Smart City. In Smart Technologies and Innovation for a Sustainable Future; Springer International Publishing: Cham, Switzerland, 2019; pp. 421–445. ISBN 9783030016593. [Google Scholar]
- Behzadan, V.; Munir, A. Adversarial Exploitation of Emergent Dynamics in Smart Cities. In Proceedings of the 2018 IEEE International Smart Cities Conference (ISC2), Kansas City, MO, USA, 16–19 September 2018; pp. 1–8. [Google Scholar]
- Butt, T.A.; Afzaal, M. Security and Privacy in Smart Cities: Issues and Current Solutions. In Smart Technologies and Innovation for a Sustainable Future; Springer International Publishing: Cham, Switzerland, 2019; pp. 317–323. ISBN 9783030016593. [Google Scholar]
- Lee, J.; Kim, J.; Seo, J. Cyber attack scenarios on smart city and their ripple effects. In Proceedings of the 2019 International Conference on Platform Technology and Service (PlatCon), Jeju, Korea, 28–30 January 2019; pp. 1–5. [Google Scholar]
- Ahmad, F.; Adnane, A.; Franqueira, V.N.L.; Kurugollu, F.; Liu, L. Man-In-The-Middle Attacks in Vehicular Ad-Hoc Networks: Evaluating the Impact of Attackers’ Strategies. Sensors 2018, 18, 4040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alibasic, A.; Junaibi, R.A.; Aung, Z.; Woon, W.L.; Omar, M.A. Cybersecurity for Smart Cities: A Brief Review. In International Workshop on Data Analytics for Renewable Energy Integration; Springer: Cham, Switzerland, 2017; pp. 22–30. [Google Scholar]
- Braun, T.; Fung, B.C.M.; Iqbal, F.; Shah, B. Security and privacy challenges in smart cities. Sustain. Cities Soc. 2018, 39, 499–507. [Google Scholar] [CrossRef]
- Cui, L.; Xie, G.; Qu, Y.; Gao, L.; Yang, Y. Security and Privacy in Smart Cities: Challenges and Opportunities. IEEE Access 2018, 6, 46134–46145. [Google Scholar] [CrossRef]
- Kettani, H.; Cannistra, R.M. On Cyber Threats to Smart Digital Environments. In Proceedings of the 2nd International Conference on Smart Digital Environment, Rabat, Morocco, 18–20 October 2018; ACM: New York, NY, USA, 2018; pp. 183–188. [Google Scholar]
- Sookhak, M.; Tang, H.; Yu, F.R. Security and Privacy of Smart Cities: Issues and Challenges. In Proceedings of the 2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Exeter, UK, 28–30 June 2018; pp. 1350–1357. [Google Scholar]
- Liu, M.; Xue, Z.; He, X.; Chen, J. Cyberthreat-Intelligence Information Sharing: Enhancing Collaborative Security. IEEE Consum. Electron. Mag. 2019, 8, 17–22. [Google Scholar] [CrossRef]
- Zhang, K.; Ni, J.; Yang, K.; Liang, X.; Ren, J.; Shen, X.S. Security and Privacy in Smart City Applications: Challenges and Solutions. IEEE Commun. Mag. 2017, 55, 122–129. [Google Scholar] [CrossRef]
- Abu, S.; Selamat, S.R.; Ariffin, A.; Yusof, R. Cyber Threat Intelligence—Issue and Challenges. Indones. J. Electr. Eng. Comput. Sci. 2018, 10, 371–379. [Google Scholar]
- Conti, M.; Dehghantanha, A.; Dargahi, T. Cyberthreat intelligence: Challenges and opportunities. In Cyber Threat Intelligence; Springer: Cham, Switzerland, 2018; pp. 1–6. [Google Scholar]
- Myat, K.; Win, N.; Myo, Y.; Khine, K. Information Sharing of Cyber Threat Intelligence with their Issue and Challenges. Int. J. Trend Sci. Res. Dev. 2019, 3, 878–880. [Google Scholar]
- Diro, A.A.; Chilamkurti, N. Distributed attack detection scheme using deep learning approach for Internet of Things. Futur. Gener. Comput. Syst. 2018, 82, 761–768. [Google Scholar] [CrossRef]
- Berman, D.S.; Buczak, A.L.; Chavis, J.S.; Corbett, C.L. A Survey of Deep Learning Methods for Cyber Security. Information 2019, 10, 122. [Google Scholar] [CrossRef] [Green Version]
- Abawajy, J.; Huda, S.; Sharmeen, S.; Hassan, M.M.; Almogren, A. Identifying cyber threats to mobile-IoT applications in edge computing paradigm. Futur. Gener. Comput. Syst. 2018, 89, 525–538. [Google Scholar] [CrossRef]
- Alsamiri, J.; Alsubhi, K. Internet of Things Cyber Attacks Detection using Machine Learning. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 627–634. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Guo, H. LuNet: A Deep Neural Network for Network Intrusion Detection. In Proceedings of the 2019 IEEE Symposium Series on Computational Intelligence (SSCI), Xiamen, China, 6–9 December 2019; pp. 617–624. [Google Scholar]
- Soe, Y.N.; Feng, Y.; Santosa, P.I.; Hartanto, R.; Kouichi, S. Towards a Lightweight Detection System for Cyber Attacks in the IoT Environment Using Corresponding Features. Electronics 2020, 9, 144. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Guo, H.; Moustafa, N. Pelican: A Deep Residual Network for Network Intrusion Detection. In Proceedings of the 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W), Valencia, Spain, 29 June–2 July 2020. [Google Scholar]
- Bradbury, J.; Merity, S.; Xiong, C.; Socher, R. Quasi-Recurrent Neural Networks. arXiv 2017, arXiv:1611.01576. [Google Scholar]
- Elsaeidy, A.; Munasinghe, K.S.; Sharma, D.; Jamalipour, A. A Machine Learning Approach for Intrusion Detection in Smart Cities. In Proceedings of the 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, HI, USA, 22–25 September 2019; pp. 1–5. [Google Scholar]
- Li, D.; Deng, L.; Lee, M.; Wang, H. IoT data feature extraction and intrusion detection system for smart cities based on deep migration learning. Int. J. Inf. Manag. 2019, 49, 533–545. [Google Scholar] [CrossRef]
- Ge, M.; Fu, X.; Syed, N.; Baig, Z.; Teo, G.; Robles-kelly, A. Deep Learning-based Intrusion Detection for IoT Networks. In Proceedings of the 2019 IEEE 24th Pacific Rim International Symposium on Dependable Computing (PRDC), Kyoto, Japan, 1–3 December 2019. [Google Scholar]
- Khraisat, A.; Gondal, I.; Vamplew, P.; Kamruzzaman, J.; Alazab, A. A Novel Ensemble of Hybrid Intrusion Detection System for Detecting Internet of Things Attacks. Electronics 2019, 8, 1210. [Google Scholar] [CrossRef] [Green Version]
- Ullah, I.; Mahmoud, Q.H. A Two-Level Flow-Based Anomalous Activity Detection System for IoT Networks. Electronics 2020, 9, 530. [Google Scholar] [CrossRef] [Green Version]
- Al-Khateeb, H.; Epiphaniou, G.; Reviczky, A.; Karadimas, P.; Heidari, H. Proactive Threat Detection for Connected Cars Using Recursive Bayesian Estimation. IEEE Sens. J. 2018, 18, 4822–4831. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Kim, J.; Kim, I.; Han, K. Cyber Threat Detection Based on Artificial Neural Networks Using Event Profiles. IEEE Access 2019, 7, 165607–165626. [Google Scholar] [CrossRef]
- Sornsuwit, P.; Jaiyen, S. A New Hybrid Machine Learning for Cybersecurity Threat Detection Based on Adaptive Boosting. Appl. Artif. Intell. 2019, 33, 462–482. [Google Scholar] [CrossRef]
- Thing, V.L.L. IEEE 802.11 Network Anomaly Detection and Attack Classification: A Deep Learning Approach. In Proceedings of the 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, CA, USA, 19–22 March 2017; pp. 1–6. [Google Scholar]
- Garg, S.; Kaur, K.; Kumar, N.; Kaddoum, G.; Zomaya, A.Y.; Ranjan, R. A Hybrid Deep Learning-Based Model for Anomaly Detection in Cloud Datacenter Networks. IEEE Trans. Netw. Serv. Manag. 2019, 16, 924–935. [Google Scholar] [CrossRef]
- Hassan, M.M.; Gumaei, A.; Alsanad, A.; Alrubaian, M.; Fortino, G. A hybrid deep learning model for efficient intrusion detection in big data environment. Inf. Sci. 2020, 513, 386–396. [Google Scholar] [CrossRef]
- Vinayakumar, R.; Kp, S.; Poornachandran, P. Applying Convolutional Neural Network for Network Intrusion Detection. In Proceedings of the 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Udupi, India, 13–16 September 2017; pp. 1222–1228. [Google Scholar]
- Wang, W.; Sheng, Y.; Wang, J.; Zeng, X.; Ye, X.; Huang, Y.; Zhu, M. HAST-IDS: Learning Hierarchical Spatial-Temporal Features Using Deep Neural Networks to Improve Intrusion Detection. IEEE Access 2018, 6, 1792–1806. [Google Scholar] [CrossRef]
- Kumar, P.; Gupta, G.P.; Tripathi, R. TP2SF: A Trustworthy Privacy-Preserving Secured Framework for sustainable smart cities by leveraging blockchain and machine learning. J. Syst. Archit. 2021, 115, 101954. [Google Scholar] [CrossRef]
- Niu, X.; Ma, J.; Wang, Y.; Zhang, J.; Chen, H.; Tang, H. A Novel Decomposition-Ensemble Learning Model Based on Ensemble Empirical Mode Decomposition and Recurrent Neural Network for Landslide Displacement Prediction. Appl. Sci. 2021, 11, 4684. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Ferrag, M.A.; Maglaras, L.; Moschoyiannis, S.; Janicke, H. Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study. J. Inf. Secur. Appl. 2020, 50, 102419. [Google Scholar] [CrossRef]
- Hasan, M.N.; Toma, R.N.; Nahid, A.; Islam, M.M.M.; Kim, J. Electricity Theft Detection in Smart Grid Systems: A CNN-LSTM Based Approach. Energies 2019, 12, 3310. [Google Scholar] [CrossRef] [Green Version]
- Kwon, D.; Natarajan, K.; Suh, S.C.; Kim, H.; Kim, J. An Empirical Study on Network Anomaly Detection using Convolutional Neural Networks. In Proceedings of the In 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS), Vienna, Austria, 2–6 July 2018; pp. 1595–1598. [Google Scholar]
- Liu, H.; Lang, B.; Liu, M.; Yan, H. Knowledge-Based Systems CNN and RNN based payload classification methods for attack detection. Knowl.-Based Syst. 2019, 163, 332–341. [Google Scholar] [CrossRef]
- Khan, A.; Sarfaraz, A. RNN-LSTM-GRU based language transformation. Soft Comput. 2019, 23, 13007–13024. [Google Scholar] [CrossRef]
- Bolelli, F.; Baraldi, L.; Pollastri, F.; Grana, C. A Hierarchical Quasi-Recurrent approach to Video Captioning. In Proceedings of the 2018 IEEE International Conference on Image Processing, Applications and Systems (IPAS), Sophia Antipolis, France, 12–14 December 2018; pp. 162–167. [Google Scholar]
- Wang, M.; Wu, X.; Wu, Z.; Kang, S.; Tuo, D.; Li, G.; Su, D.; Yu, D.; Meng, H. Quasi-fully Convolutional Neural Network with Variational Inference for Speech Synthesis. In Proceedings of the ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 7060–7064. [Google Scholar]
- Huang, J.; Feng, Y. Optimization of Recurrent Neural Networks on Natural Language Processing. In Proceedings of the Proceedings of the 2019 8th International Conference on Computing and Pattern Recognition, New York, NY, USA, 23–25 October 2019; pp. 39–45. [Google Scholar]
- Yao, D.; Wen, M.; Liang, X.; Fu, Z.; Zhang, K.; Yang, B. Energy Theft Detection with Energy Privacy Preservation in the Smart Grid. IEEE Internet Things J. 2019, 6, 7659–7669. [Google Scholar] [CrossRef]
- Koroniotis, N.; Moustafa, N.; Sitnikova, E.; Turnbull, B. Towards the Development of Realistic Botnet Dataset in the Internet of Things for Network Forensic Analytics: Bot-IoT Dataset. Futur. Gener. Comput. Syst. 2018, 100, 779–796. [Google Scholar] [CrossRef] [Green Version]
- Moustafa, N. TON_IoT Datasets. In Proceedings of the IEEE Dataport, Brisbane, Australia, 16 October 2019. [Google Scholar] [CrossRef]
- Safa, H.; Nassar, M.; Al Orabi, W.A.R. Benchmarking Convolutional and Recurrent Neural Networks for Malware Classification. In Proceedings of the 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco, 24–28 June 2019; pp. 561–566. [Google Scholar]
- Shafiq, M.; Tian, Z.; Sun, Y.; Du, X.; Guizani, M. Selection of effective machine learning algorithm and Bot-IoT attacks traffic identification for internet of things in smart city. Futur. Gener. Comput. Syst. 2020, 107, 433–442. [Google Scholar] [CrossRef]
- Vinayakumar, R.; Alazab, M.; Member, S.; Soman, K.P. Deep Learning Approach for Intelligent Intrusion Detection System. IEEE Access 2019, 7, 41525–41550. [Google Scholar] [CrossRef]
- Obaidan, F.A.; Saeed, S. Digital Transformation and Cybersecurity Challenges: A Study of Malware Detection Using Machine Learning Techniques. In Handbook of Research on Advancing Cybersecurity for Digital Transformation; IGI Global: Pennsylvania, PA, USA, 2021; pp. 203–226. [Google Scholar]
- Naeem, H.; Ullah, F.; Naeem, M.R.; Khalid, S.; Vasan, D.; Jabbar, S.; Saeed, S. Malware detection in industrial internet of things based on hybrid image visualization and deep learning model. Ad. Hoc. Netw. 2020, 105, 102154. [Google Scholar] [CrossRef]
- Khadam, U.; Iqbal, M.M.; Saeed, S.; Dar, S.H.; Ahmad, A.; Ahmad, M. Advanced security and privacy technique for digital text in smart grid communications. Comput. Electr. Eng. 2021, 93, 107205. [Google Scholar] [CrossRef]
- Yamin, M.M.; Katt, B.; Nowostawski, M. Serious games as a tool to model attack and defense scenarios for cyber-security exercises. Comput. Secur. 2021, 110, 102450. [Google Scholar] [CrossRef]
- Poleto, T.; Carvalho VD, H.D.; Silva AL, B.D.; Clemente TR, N.; Silva, M.M.; Gusmão AP, H.D.; Costa, A.P.C.S.; Nepomuceno, T.C.C. Fuzzy cognitive scenario mapping for causes of cybersecurity in telehealth services. Healthcare 2021, 9, 1504. [Google Scholar] [CrossRef]
- Shayan, S.; Kim, K.P.; Ma, T.; Nguyen, T.H.D. The first two decades of smart city research from a risk perspective. Sustainability 2020, 12, 9280. [Google Scholar] [CrossRef]
- Kumar, S.; Biswas, B.; Bhatia, M.S.; Dora, M. Antecedents for enhanced level of cyber-security in organisations. J. Enterp. Inf. Manag. 2021, 34, 1597–1629. [Google Scholar] [CrossRef]
Ref | Cyber Threats | Algorithm | Data Sources | Accuracy | FPR |
---|---|---|---|---|---|
[24] | DDoS | Restricted Boltzmann machine and FFNN | Simulated smart water system dataset | 97.5% | - |
[21] | Information theft, reconnaissance, and DDoS | J48 | BoT-IoT UNSW | - | 0.41 |
[26] | Information theft, reconnaissance, and DDoS | FFNN | BoT-IoT UNSW | - | - |
[19] | DDoS, DoS, data exfiltration, keylogging, OS fingerprinting, and service scan | K-nearest neighbors (K-NN) | BoT-IoT UNSW | 99.00% | - |
[27] | DDoS, DoS, keylogging, and reconnaissance | C5-SVM | BoT-IoT UNSW | 99.97% | 0.001 |
[28] | DDoS, DoS, data exfiltration, keylogging, OS fingerprinting, and service scan | Decision tree-RF | BoT-IoT UNSW | 99.80% | - |
[29] | Remote car control | Recursive Bayesian estimation | Route data for connected cars | - | - |
[30] | DoS, probe, R2L, and U2R | FCNN, CNN, and LSTM | Network events | 94.7% | 0.049 |
[31] | Tor traffic (anonymous IP) | C4.5, Multilayer perceptron (MLP), SVM, and linear discriminant analysis (LDA) | UNB-CIC TOR Network Traffic dataset | 100 | 0 |
Worms, DoS, backdoors, reconnaissance, exploits, analysis, generic, fuzzers, and shellcode | UNSW-NB15 | 97.84% | 0.23 | ||
[32] | Injection, Flooding, Impersonation | Stacked auto-encoder (SAE) | AWID-CLS-R | 98.66% | - |
[33] | DoS, probe, R2L, and U2R | GWO-CNN | DARPA1998 | 97.92% | 3.60 |
KDD CUP 99 | 98.42% | 2.22 | |||
[34] | Worms, DoS, backdoors, reconnaissance, exploits, analysis, generic, fuzzers, and shellcode | CNN-LSTM | UNSW-NB15 | 98.43% | - |
[35] | DoS, probe, R2L, and U2R | CNN-LSTM | KDD CUP 99 | 98.7% | 0.005 |
[36] | DoS, probe, R2L, U2R, BruteForce SSH, DDoS, and infiltrating | CNN-LSTM | ISCX2012 | 99.69% | 0.22 |
DARPA1998 | 99.68% | 0.07 | |||
[20] | Worms, DoS, backdoors, reconnaissance, exploits, analysis, generic, fuzzes, and shellcode | CNN-LSTM | UNSW-NB15 | 84.98% | 1.89 |
DoS, probe, R2L, and U2R | NSL-KDD | 99.05% | 0.65 |
Attack | Attack Subcategory | Number of Instances |
---|---|---|
Reconnaissance | Service scan | 73,168 |
OS fingerprinting | 17,914 | |
DoS | TCP | 615,800 |
UDP | 1,032,975 | |
HTTP | 1485 | |
DDoS | TCP | 977,380 |
UDP | 948,255 | |
HTTP | 989 | |
Information theft | Keylogging | 73 |
Data theft | 6 |
Attack | Number of Instances |
---|---|
DoS | 20,000 |
DDoS | 20,000 |
Scanning | 20,000 |
Ransomware | 20,000 |
Backdoor | 20,000 |
Injection | 20,000 |
Cross-Site Scripting (XSS) | 20,000 |
Password | 20,000 |
Man-In-The-Middle (MITM) | 1043 |
Dataset | Accuracy% | TPR% | FPR |
---|---|---|---|
BoT-IoT | 99.99 | 99.92 | 0.0003 |
TON_IoT | 99.99 | 99.99 | 0.001 |
Model | Accuracy | Precision | Recall | F-Score | Avg. Training Time per Epoch | Classification Time |
---|---|---|---|---|---|---|
With LSTM | 99.99% | 100% | 100% | 100% | 1717.4 s | 326 s |
With QRNN | 99.99% | 100% | 100% | 100% | 1299.1 s | 251 s |
Model | Accuracy | Precision | Recall | F-Score | Avg. Training Time per Epoch | Classification Time |
---|---|---|---|---|---|---|
With LSTM | 99.99% | 100% | 100% | 100% | 86.3 s | 16 s |
With QRNN | 99.99% | 100% | 100% | 100% | 66.5 s | 13 s |
Model | Accuracy% | Precision% | Recall% | F-Score% |
---|---|---|---|---|
K-NN [19] | 99.00 | 99.00 | 99.00 | 99.00 |
Hybrid IDS [27] | 99.97 | - | - | 95.7 |
RF [28] | 99.80 | 99.00 | 99.00 | 98.80 |
RF [37] | 99.99 | 79.76 | 62.98 | 65.08 |
TP2SF [37] | 99.99 | 99.97 | 94.92 | 97.08 |
Our model | 99.99 | 100 | 100 | 100 |
Model | Accuracy% | Precision% | Recall% | F-Score% |
---|---|---|---|---|
RF [37] | 97.81 | 87.55 | 85.43 | 86.41 |
TP2SF [37] | 98.84 | 97.23 | 94.03 | 95.28 |
Our model | 99.99 | 100 | 100 | 100 |
Model | Accuracy% | TPR% | FPR |
---|---|---|---|
MLP | 99.98 | 86.42 | 0.002 |
CNN | 99.98 | 88.13 | 0.001 |
GRU | 99.98 | 96.06 | 0.001 |
LSTM | 99.99 | 94.69 | 0.0004 |
Our model | 99.99 | 99.92 | 0.0003 |
Model | Accuracy% | TPR% | FPR |
---|---|---|---|
MLP | 99.67 | 99.51 | 0.03 |
CNN | 99.88 | 99.75 | 0.01 |
GRU | 97.85 | 96.95 | 0.27 |
LSTM | 99.83 | 99.79 | 0.02 |
Our model | 99.99 | 99.99 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Taleb, N.; Saqib, N.A. Towards a Hybrid Machine Learning Model for Intelligent Cyber Threat Identification in Smart City Environments. Appl. Sci. 2022, 12, 1863. https://doi.org/10.3390/app12041863
Al-Taleb N, Saqib NA. Towards a Hybrid Machine Learning Model for Intelligent Cyber Threat Identification in Smart City Environments. Applied Sciences. 2022; 12(4):1863. https://doi.org/10.3390/app12041863
Chicago/Turabian StyleAl-Taleb, Najla, and Nazar Abbas Saqib. 2022. "Towards a Hybrid Machine Learning Model for Intelligent Cyber Threat Identification in Smart City Environments" Applied Sciences 12, no. 4: 1863. https://doi.org/10.3390/app12041863
APA StyleAl-Taleb, N., & Saqib, N. A. (2022). Towards a Hybrid Machine Learning Model for Intelligent Cyber Threat Identification in Smart City Environments. Applied Sciences, 12(4), 1863. https://doi.org/10.3390/app12041863