Life Cycle Assessment of Concrete Pavement Rehabilitation: A Romanian Case Study
Abstract
:1. Introduction
- Cradle-to-grave—an evaluation of the life cycle of a product, from the purchase of raw materials to recycling and disposal.
- Cradle-to-gate—an evaluation of the partial life cycle of a product, from the purchase of raw materials to the manufacturing stage, before shipment to the consumer.
- Gate-to-gate—an evaluation of the partial life cycle of a product, which is considered a single process that adds value to the entire production.
- Gate-to-grave—an evaluation of the life cycle of a product, from the purchase of raw materials to recycling or disposal.
2. Short History
3. Materials and Methods
3.1. General Information about the Analysed Road Sector
3.2. Presentation of the State of Pavement Degradation
- Insufficient load-bearing capacity for current road traffic;
- Uneven thickness of the pavement structure;
- Inhomogeneity of the structure along the road;
- The small thicknesses of the pavement structure had and still have a negative influence on the frost−thaw behaviours, and an important part of the degradations of the structure being caused by this aspect.
- Road bumps caused by water accumulated in freezing areas and turning it into ice lenses;
- Settlements, alligator cracking, and cracks caused by the accumulation of water from melting ice lenses, by softening the supporting ground, and heavy traffic;
- Cracking and tiling of cement concrete slabs.
- Cracks transmitted to the joints;
- Edge degradation, with a low, medium, and high severity level;
- Swells;
- Polished surfaces;
- Exuded surfaces, with a medium severity level;
- Pinched surfaces with medium and high severity;
- Shoulder failures.
3.3. Rehabilitation Proposals
3.3.1. First Variant
- 5 cm MASF 16 or 4 cm MASF 16 according to the project (MASF—fibre-stabilized asphalt mixture)
- 6 cm BAD 20 or 5 cm BAD 25 according to the project (BAD—lightweight asphalt concrete)
- 8 cm AB 31 or 5 or 6 cm AB 2 according to the project (AB—asphalt bitumen mixture).
3.3.2. Second Variant
3.3.3. Third Variant
- Repairs of the areas marked with degradation, with a 40% share of the total road surface in the Pitești−Câmpulung sector and 10% of the total road surface in the Câmpulung−Brașov sector;
- Resolving surface degradations, before starting the reinforcement works;
- Execution of a base layer of the mixture AB 2, with a minimum of 12 cm total thickness, laid in two layers of 6 cm thickness each (the first with an equalizing role);
- Laying a geocomposite with a resistance of at least 50 kN/n in both directions, over the first layer of at least 6 cm of the base mixture;
- 5 cm thick bonding layer;
- 4 cm thick wear layer.
4. Results
4.1. LCA with GaBi
4.1.1. First Step
4.1.2. Second Step
- First alternative: Reinforcement, according to the third variant. The laying of three layers of asphalt mixtures.
- Second alternative: Reinforcement with geocomposite, according to the third variant. The laying of the asphalt mix layers over a geocomposite.
- Third alternative: Complete restoration of the pavement structure, according to the second variant.
4.1.3. Third Step
- The MASF 16 layer is assimilated with a layer of asphalt;
- The BAD 25 m layer is assimilated with a layer of asphalt;
- The AB2 layer is assimilated with a layer of asphalt;
- The concrete pavement is assimilated with the C25/30 class of concrete;
- The geocomposite is assimilated with an approximate amount of fibre;
- The stabilized ballast layer is assimilated with a simple ballast layer;
- The stabilized soil layer is assimilated with an assimilated soil road.
4.1.4. The Negative Impact on the Environment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- ISO 14040:2007; Environmental Management. Life Cycle Assessment. Principles and Framework. ISO: Geneva, Switzerland, 2006.
- Awange, J. Environmental Impact Assessment. Environ. Sci. Eng. 2018, 3, 243–272. [Google Scholar] [CrossRef]
- Fothergill, J.; Barlow, E.; Baxter, M.; Blyth, N.; Harada, R.; Stainton, J. Special Report—The State of Environmental Impact Assessment Practice in the UK Environmental Impact Assessment; Institute of Environmental Management and Assessment: March, UK, 2016. [Google Scholar]
- European Commission. Environmental Impact Assessment of Projects: Guidance on Screening; European Commission: Brussels, Belgium, 2014. [Google Scholar] [CrossRef]
- Jiawen, L.; Hui, L.; Yu, W.; Nailing, G. Integrated Life Cycle Economic and Environmental Impact Assessment for Transportation Infrastructure; Intechopen: London, UK, 2019. [Google Scholar]
- Nicuţă, A.M. Life Cycle Assessment Study for New and Recycled Asphalt Pavements. Bull. Polytech. Inst. Iasi 2011, 61, 81. [Google Scholar]
- Dumitrescu, L.; Maxineasa, S.G.; Simion, I.M.; Taranu, N.; Andrei, R.; Gavrilescu, M. Evaluation of the Environmental Impact of Road Pavements from a Life Cycle Perspective. Environ. Eng. Manag. J. 2014, 13, 449–455. [Google Scholar] [CrossRef]
- Flowerdew, A.D.J.; Hammond, A.; Travers, R. Roads and the Environment; The World Bank: Washington, DC, USA, 1973; Volume 7. [Google Scholar] [CrossRef]
- Mohamed, A.S.; Xiao, F.; Hettiarachchi, C. Project Level Management Decisions in Construction and Rehabilitation of Flexible Pavements. Autom. Constr. 2022, 133, 104035. [Google Scholar] [CrossRef]
- The Adaptation to Climate Changes Effects Guide. Available online: www.meteoromania.ro/anm/images/clima/SSCGhidASC.pdf (accessed on 24 May 2021).
- Condurat, M. Preventing and Reducing the Negative Impact of the Road Transport System on the Environment. Ph.D. Thesis, ”Gheorghe Asachi” Technical University of Iași, Iasi, Romania, 2016. [Google Scholar]
- Dragoslav, D.N. Strategies for Sustainable Pavement Structures. Ph.D. Thesis, ”Gheorghe Asachi” Technical University of Iași, Iasi, Romania, 2017. [Google Scholar]
- Butt, A.A. Life Cycle Assessment of Asphalt Roads: Decision Support at the Project Level. Ph.D. Thesis, Royal Institute of Technology, Stockholm, Sweden, 11 December 2014. [Google Scholar]
- Jensen, A.A.; Elkington, J.; Christiansen, K.; Hoffmann, L.; Møller, B.T.; Schmidt, A.; van Dijk, F. Life Cycle Assessment (LCA)—A Guide to Approaches, Experiences and Information Sources; European Community: Brussels, Belgium, 1997. [Google Scholar]
- Heidari, M.R.; Heravi, G.; Esmaeeli, A.N. Integrating Life-Cycle Assessment and Life-Cycle Cost Analysis to Select Sustainable Pavement: A Probabilistic Model Using Managerial Flexibilities. J. Clean. Prod. 2020, 254, 120046. [Google Scholar] [CrossRef]
- Heravi, G.; Esmaeeli, A.N. Fuzzy multicriteria decision-making approach for pavement project evaluation using life-cycle cost/performance analysis. J. Infrastruct. Syst. 2014, 20, 04014002. [Google Scholar] [CrossRef]
- Jiang, R.; Wu, P. Estimation of Environmental Impacts of Roads through Life Cycle Assessment: A Critical Review and Future Directions. Transp. Res. Part D Transp. Environ. 2019, 77, 148–163. [Google Scholar] [CrossRef]
- Ventura, A.; Jullien, A. Life cycle assessment applied to road pavements: An analysis of method and results relevancy. In Proceedings of the Sixth International Conference on Maintenance and Rehabilitation of Pavements and Technology Control, Turin, Italy, 8–10 July 2009; pp. 1210–1219. [Google Scholar]
- Nascimento, F.; Gouveia, B.; Dias, F.; Ribeiro, F.; Silva, M.A. A Method to Select a Road Pavement Structure with Life Cycle Assessment. J. Clean. Prod. 2020, 271, 122210. [Google Scholar] [CrossRef]
- PE International, AG. GaBi Manual. 2012, p. 388. Available online: https://gabi.sphera.com/fileadmin/GaBi_Manual/GaBi_6_manual.pdf (accessed on 1 March 2021).
- Di Bari, R.; Jorgji, O. Guidelines and Calculation Methods for Lifecycle Environmental Impact Assessment of Plus Energy Buildings; Cultural-E, 2021. 870072. Available online: https://www.cultural-e.eu/wp-content/uploads/2021/10/CULTURAL-E_D4.5.pdf (accessed on 25 May 2021).
- Available online: https://gabi.sphera.com/international/solutions/life-cycle-assessment (accessed on 1 March 2021).
- McManus, M.C.; Taylor, C.M. The Changing Nature of Life Cycle Assessment. Biomass Bioenergy 2015, 82, 13–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanova, N.; Gugleva, V.; Dobreva, M.; Pehlivanov, I.; Stefanov, S.; Andonova, V. Silver Nanoparticles as Multi-Functional Drug Delivery Systems. In Nanomedicines; IntechOpen: London, UK, 2018. [Google Scholar]
- Carlson, A. Life Cycle Assessment of Roads and Pavements. Studies Made in Europe. VTI Rapport 736A. 2011. Available online: https://www.researchgate.net/publication/262874388_Life_cycle_assessment_of_roads_and_pavements_-_Studies_made_in_Europe (accessed on 25 May 2021).
- Santero, N.; Masanet, E.; Horvath, A. Life Cycle Assessment of Pavements: A Critical Review of Existing Research; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2010.
- Zhang, H.; Lepech, M.D.; Keoleian, G.A.; Qian, S.; Li, V.C. Dynamic Life-Cycle Modeling of Pavement Overlay Systems: Capturing the Impacts of Users, Construction, and Roadway Deterioration. J. Infrastruct. Syst. 2010, 16, 299–309. [Google Scholar] [CrossRef] [Green Version]
- Berthiaume, R.; Christian, B. Exergy Analysis of the Environmental Impact of Paving Material Manufacture. Trans. Can. Soc. Mech. Eng. 1999, 23, 187–196. [Google Scholar] [CrossRef]
- Stripple, H. Life Cycle Assessment of Road: A Pilot Study for Inventory Analysis, 2nd ed.; Swedish National Road Administration: Borlänge, Sweden, 2001. [Google Scholar]
- Zapata, P.; Gambatese, J.A. Energy consumption of asphalt and reinforced concrete pavement materials and construction. J. Infrastruct. Syst. 2005, 11, 9–20. [Google Scholar] [CrossRef]
- Abaza, K.A. Empirical Markovian-Based Models for Rehabilitated Pavement Performance Used in a Life Cycle Analysis Approach. Struct. Infrastruct. Eng. Maint. Manag. Life-Cycle Des. Perform. 2017, 13, 625–636. [Google Scholar] [CrossRef]
- Santos, J.; Ferreira, A.; Flintsch, G. A life cycle assessment model for pavement management: Methodology and computational framework. Int. J. Pavement Eng. 2015, 16, 268–286. [Google Scholar] [CrossRef]
- SR EN ISO. 14004:2016; Environmental Management Systems. General Guidelines for Implementation. ISO: Geneva, Switerland, 2016.
- SR EN ISO. 14044:2007; Environmental Management. Life Cycle Assessment. Requirements and Guidelines. ISO: Geneva, Switerland, 2007.
- SR ISO. 14050:2009; Environmental Management—Vocabulary. No. 3533553; ISO: Geneva, Switerland, 2009.
- PD 177:2001; Standard for the Design of the Flexible and Semi-Rigid Pavements—Analytical Method. Search Corporation: Bucharest, Romania, 2001; In Romanian.
- De Horta, O.S.; Carlos, J. Associations of distress and diagnosis of bitumen-surfaced road pavements. In Proceedings of the 5th International Conference on Low-Volume Roads, Raleigh, NC, USA, 19–23 May 1991. [Google Scholar]
- Încăllzirea Globală. Available online: ro.wikipedia.org/wiki/încăllzirea_globală#cite_note-1 (accessed on 24 May 2021).
- NASA Ozone Watch. Available online: https://ozonewatch.gsfc.nasa.gov/facts/SH.html (accessed on 24 May 2021).
- Efectele Metropolelor Asupra Stratului de Ozon. Available online: https://uleiuri-lubrifianti.com.ro/efectele-metropolelor-asupra-stratului-de-ozon/ (accessed on 25 May 2021).
- Environment and Health. Available online: https://www.eea.europa.eu/themes/human/intro (accessed on 25 May 2021).
Pavement Structure | km 111 + 000 | km 112 + 000 | km 113 + 000 | km 114 + 000 | km 115 + 000 | km 116 + 000 | km 117 + 000 | km 118 + 000 | km 119 + 000 |
---|---|---|---|---|---|---|---|---|---|
Asphalt | 5 cm | 5 cm | |||||||
Concrete | 18 cm | 18 cm | 18 cm | 18 cm | 18 cm | 19 cm | 18 cm | 19 cm | 18 cm |
Ballast | 15 cm | 40 cm | 25 cm | 70 cm | 40 cm | 15 cm | 40 cm | 75 cm | 20 cm |
Broken stone | 30 cm | 20 cm | 20 cm | 25 cm | 40 cm |
Pavement Structure | km 111 + 000 | km 112 + 000 | km 113 + 000 | km 114 + 000 | km 115 + 000 | km 116 + 000 | km 117 + 000 | km 118 + 000 | km 119 + 000 | Total Volume [mc] | Quantities [Tone] |
---|---|---|---|---|---|---|---|---|---|---|---|
Asphalt | 35 | 35 | 70 | 154 | |||||||
Concrete | 126 | 126 | 126 | 126 | 126 | 133 | 126 | 133 | 126 | 1148 | 2525.6 |
Ballast | 105 | 280 | 175 | 490 | 280 | 105 | 280 | 525 | 140 | 2380 | 4760 |
Broken stone | 210 | 140 | 140 | 175 | 280 | 945 | 1606.5 |
Pavement Structure | km 111 + 000 | km 112 + 000 | km 113 + 000 | km 114 + 000 | km 115 + 000 | km 116 + 000 | km 117 + 000 | km 118 + 000 | km 119 + 000 | Total Volume [mc] | Quantities [Tone] |
---|---|---|---|---|---|---|---|---|---|---|---|
MASF 16 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 252 | 554.4 |
BAD 25 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 315 | 693 |
AB2 | 42 | 42 | 56 | 56 | 56 | 56 | 56 | 56 | 56 | 476 | 1047.2 |
Concrete | 126 | 126 | 126 | 126 | 126 | 133 | 126 | 133 | 126 | 1148 | 2525.6 |
Ballast | 105 | 280 | 175 | 490 | 280 | 105 | 280 | 525 | 140 | 2380 | 4760 |
Broken stone | 210 | 140 | 140 | 175 | 280 | 945 | 1606.5 |
Pavement Structure | km 111 + 000 | km 112 + 000 | km 113 + 000 | km 114 + 000 | km 115 + 000 | km 116 + 000 | km 117 + 000 | km 118 + 000 | km 119 + 000 | Total Volume [mc] | Quantities [Tone] |
---|---|---|---|---|---|---|---|---|---|---|---|
MASF 16 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 252 | 554.4 |
BAD 25 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 315 | 693 |
AB2 | 42 | 42 | 56 | 56 | 56 | 56 | 56 | 56 | 56 | 476 | 1047.2 |
Geocomposite | |||||||||||
AB2 | 42 | 42 | 56 | 56 | 56 | 56 | 56 | 56 | 56 | 476 | 1047.2 |
Concrete | 126 | 126 | 126 | 126 | 126 | 133 | 126 | 133 | 126 | 1148 | 2525.6 |
Ballast | 105 | 280 | 175 | 490 | 280 | 105 | 280 | 525 | 140 | 2380 | 4760 |
Broken stone | 210 | 140 | 140 | 175 | 280 | 945 | 1606.5 |
Pavement Structure | km 111 + 000 | km 112 + 000 | km 113 + 000 | km 114 + 000 | km 115 + 000 | km 116 + 000 | km 117 + 000 | km 118 + 000 | km 119 + 000 | Total Volume [mc] | Quantities [Tone] |
---|---|---|---|---|---|---|---|---|---|---|---|
MASF 16 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 252 | 554.4 |
BAD 25 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 35 | 315 | 693 |
AB2 | 42 | 42 | 56 | 56 | 56 | 56 | 56 | 56 | 56 | 476 | 1047.2 |
Stabilized ballast | 175 | 175 | 175 | 175 | 175 | 175 | 175 | 175 | 175 | 1575 | 3150 |
Ballast | 210 | 210 | 210 | 210 | 210 | 210 | 210 | 210 | 210 | 1890 | 3780 |
Stabilized layer soil | 210 | 210 | 210 | 210 | 210 | 210 | 210 | 210 | 210 | 1890 | 3213 |
Alternatives | Layers | Climate Change Midpoint, incl Biogenic Carbon (v1.06) [kg CO2-Equiv.] | |
---|---|---|---|
Layer | Total | ||
Existing pavement structure | Asphalt | 9879.078 | 270,745.998 |
Concrete | 230,567.568 | ||
Broken stone | 19,470.426 | ||
Ballast | 10,828.926 | ||
1st alternative | MASF 16 | 35,564.681 | 385,343.304 |
BAD 25 | 44,455.852 | ||
AB 2 | 44,455.852 | ||
Concrete | 230,567.568 | ||
Ballast | 10,828.926 | ||
Broken stone | 19,470.426 | ||
2nd alternative | MASF 16 | 35,564.681 | 475,242.915 |
BAD 25 | 44,455.852 | ||
AB 2 | 67,177.732 | ||
AB2 | 67,177.732 | ||
Concrete | 230,567.568 | ||
Ballast | 10,828.926 | ||
Broken stone | 19,470.426 | ||
3rd alternative | MASF 16 | 35,564.681 | 2,170,036.288 |
BAD 25 | 44,455.852 | ||
AB 2 | 44,455.852 | ||
Ballast | 15,765.642 | ||
Soil | 2,029,794.262 |
Alternatives | Layers | Ozone Depletion Midpoint (v1.06) [kg CFC-11 eq] | |
---|---|---|---|
Layer | Total | ||
Existing pavent structure | Asphalt | 7.66 × 10−7 | 2.71 × 10−5 |
Concrete | 1.28 × 10−5 | ||
Broken stone | 1.06 × 10−5 | ||
Ballast | 3.00 × 10−6 | ||
1st alternative | MASF 16 | 2.76 × 10−6 | 3.60 × 10−5 |
BAD 25 | 3.45 × 10−6 | ||
AB 2 | 3.45 × 10−6 | ||
Concrete | 1.28 × 10−5 | ||
Ballast | 3.00 × 10−6 | ||
Broken stone | 1.06 × 10−5 | ||
2nd alternative | MASF 16 | 2.76 × 10−6 | 4.30 × 10−5 |
BAD 25 | 3.45 × 10−6 | ||
AB 2 | 5.20 × 10−6 | ||
AB2 | 5.20 × 10−6 | ||
Concrete | 1.28 × 10−5 | ||
Ballast | 3.00 × 10−6 | ||
Broken stone | 1.06 × 10−5 | ||
3rd alternative | MASF 16 | 2.76 × 10−6 | 8.60 × 10−5 |
BAD 25 | 3.45 × 10−6 | ||
AB 2 | 3.45 × 10−6 | ||
Ballast | 4.36 × 10−6 | ||
Soil | 7.20 × 10−5 |
Alternatives | Layers | Human Toxicity Midpoint, Cancer Effects (v1.06) [CTUh] | |
---|---|---|---|
Layer | Total | ||
Existing pavement structure | Asphalt | × | × |
Concrete | × | ||
Broken stone | × | ||
Ballast | × | ||
1st alternative | MASF 16 | × | × |
BAD 25 | × | ||
AB 2 | × | ||
Concrete | × | ||
Ballast | × | ||
Broken stone | × | ||
2nd alternative | MASF 16 | × | × |
BAD 25 | × | ||
AB 2 | × | ||
AB2 | × | ||
Concrete | × | ||
Ballast | × | ||
Broken stone | × | ||
3rd alternative | MASF 16 | × | × |
BAD 25 | × | ||
AB 2 | × | ||
Ballast | × | ||
Soil | 404.22 × 10−4 |
Environment Impact | 1st Alternative | 2nd Alternative | 3rd Alternative |
---|---|---|---|
Global warming potential | 1 | 2 | 3 |
Ozone stratospheric impact | 1 | 2 | 3 |
The impact on human health | 1 | 2 | 3 |
Total | 3 | 6 | 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pleșcan, C.; Barta, M.; Maxineasa, S.G.; Pleșcan, E.-L. Life Cycle Assessment of Concrete Pavement Rehabilitation: A Romanian Case Study. Appl. Sci. 2022, 12, 1769. https://doi.org/10.3390/app12041769
Pleșcan C, Barta M, Maxineasa SG, Pleșcan E-L. Life Cycle Assessment of Concrete Pavement Rehabilitation: A Romanian Case Study. Applied Sciences. 2022; 12(4):1769. https://doi.org/10.3390/app12041769
Chicago/Turabian StylePleșcan, Costel, Melinda Barta, Sebastian George Maxineasa, and Elena-Loredana Pleșcan. 2022. "Life Cycle Assessment of Concrete Pavement Rehabilitation: A Romanian Case Study" Applied Sciences 12, no. 4: 1769. https://doi.org/10.3390/app12041769
APA StylePleșcan, C., Barta, M., Maxineasa, S. G., & Pleșcan, E.-L. (2022). Life Cycle Assessment of Concrete Pavement Rehabilitation: A Romanian Case Study. Applied Sciences, 12(4), 1769. https://doi.org/10.3390/app12041769