Designing a Multicriteria WebGIS-Based Pre-Diagnosis Tool for Indoor Radon Potential Assessment
Abstract
:1. Introduction
2. Related Works
2.1. Framework
2.2. Radon Occurrence and Concentration
2.3. Radon Assessment
2.4. Recent Developments
3. Materials and Methods
4. Results and Discussion
- Decision-making tool: can be applied in a preliminary stage when projecting new buildings. Additionally, this tool can be helpful to assess the need of carrying out in situ experimental campaigns in existing buildings located in regions with high radon potential, or locations with medium radon potential, but where the combination of other factors can also justify in situ experimental campaigns for on-site radon measurements.
- Pre-diagnosis assessment tool: by using radon potential maps as a starting point, but also by establishing the analysis of other relevant criteria, such as the indoor occupancy rates. The rate of occupation of indoor spaces is crucial to assess the need to implement remediation measures since these are only considered necessary when human occupancy is considered. The correlation between indoor radon concentration and the time spent indoors (exposure time) will define the daily exposure dose, and can also be easily determined, for example, using the methodology presented by Lopes et al. (2021) [70].
- Radon literacy tool: by using a WebGIS-based platform designed to provide a prompt preliminary assessment to check the probability of the occurrence of high indoor radon concentrations, justifying, therefore, the adoption of measures, whether preventive or corrective, to maintain radon concentrations within the recommended threshold values.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Magalhães Rios, J.L.; Boechat, J.L.; Gioda, A.; dos Santos, C.Y.; de Aquino Neto, F.R.; e Silva, J.R.L. Symptoms prevalence among office workers of a sealed versus a non-sealed building: Associations to indoor air quality. Environ. Int. 2009, 35, 1136–1141. [Google Scholar] [CrossRef] [PubMed]
- Gawande, S.; Tiwari, R.R.; Narayanan, P.; Bhadri, A. Indoor air quality and sick building syndrome: Are green buildings better than conventional buildings? Indian J. Occup. Environ. Med. 2020, 24, 30. [Google Scholar] [PubMed]
- Barros, P.; Curado, A.; Lopes, S.I. Internet of Things (IoT) Technologies for Managing Indoor Radon Risk Exposure: Applications, Opportunities, and Future Challenges. Appl. Sci. 2021, 11, 11064. [Google Scholar] [CrossRef]
- Gomzi, M.; Bobić, J. Sick building syndrome: Do we live and work in unhealthy environment? Period. Biol. 2009, 111, 79–84. [Google Scholar]
- Ghaffarianhoseini, A.; AlWaer, H.; Omrany, H.; Ghaffarianhoseini, A.; Alalouch, C.; Clements-Croome, D.; Tookey, J. Sick building syndrome: Are we doing enough? Archit. Sci. Rev. 2018, 61, 99–121. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Air Quality Guidelines for Europe; WHO Regional Office for Europe: Copenhagen, Denmark, 1987; 426p. [Google Scholar]
- World Health Organization. Air Quality Guidelines for Europe; WHO Regional Office for Europe: Copenhagen, Denmark, 2000. [Google Scholar]
- World Health Organization. WHO Air Quality Guidelines Global Update 2005: Report on a Working Group Meeting, Bonn, Germany, 18–20 October 2005; World Health Organization Regional Office for Europe: Copenhagen, Denmark, 2005. [Google Scholar]
- Heseltine, E.; Rosen, J. WHO Guidelines for Indoor Air Quality: Dampness and Mould; World Health Organization Regional Office for Europe: Copenhagen, Denmark, 2009. [Google Scholar]
- World Health Organization. WHO Guidelines for Indoor Air Quality: Selected Pollutants; World Health Organization Regional Office for Europe: Copenhagen, Denmark, 2010. [Google Scholar]
- Scheberle, D. Radon and asbestos: A study of agenda setting and causal stories. Policy Stud. J. 1994, 22, 74–86. [Google Scholar] [CrossRef]
- Symonds, P.; Rees, D.; Daraktchieva, Z.; McColl, N.; Bradley, J.; Hamilton, I.; Davies, M. Home energy efficiency and radon: An observational study. Indoor Air 2019, 29, 854–864. [Google Scholar] [CrossRef]
- Yarmoshenko, I.V.; Onishchenko, A.D.; Malinovsky, G.P.; Vasilyev, A.V.; Nazarov, E.I.; Zhukovsky, M.V. Radon concentration in conventional and new energy efficient multi-storey apartment houses: Results of survey in four Russian cities. Sci. Rep. 2020, 10, 18136. [Google Scholar] [CrossRef]
- Zeeb, H.; Shannoun, F.; WHO. WHO Handbook on Indoor Radon: A Public Health Perspective; World Health Organization: Genova, Switzerland, 2009.
- Sterling, E.; Sterling, T.; McIntyre, D. New health hazards in sealed buildings. Am. Inst. Archit. J. 1983, 72, 5395351. [Google Scholar]
- Jones, A.P. Indoor air quality and health. Atmos. Environ. 1999, 33, 4535–4564. [Google Scholar] [CrossRef]
- Jafari, M.J.; Khajevandi, A.A.; Najarkola, S.A.M.; Yekaninejad, M.S.; Pourhoseingholi, M.A.; Omidi, L.; Kalantary, S. Association of sick building syndrome with indoor air parameters. Tanaffos 2015, 14, 55. [Google Scholar] [PubMed]
- Wells, E.M.; Berges, M.; Metcalf, M.; Kinsella, A.; Foreman, K.; Dearborn, D.G.; Greenberg, S. Indoor air quality and occupant comfort in homes with deep versus conventional energy efficiency renovations. Build. Environ. 2015, 93, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Curado, A.; De Freitas, V. Influence of thermal insulation of facades on the performance of retrofitted social housing buildings in Southern European countries. Sustain. Cities Soc. 2019, 48, 101534. [Google Scholar] [CrossRef]
- Ramos, N.M.; Almeida, R.M.; Simões, M.L.; Delgado, J.M.; Pereira, P.F.; Curado, A.; Soares, S.; Fraga, S. Indoor hygrothermal conditions and quality of life in social housing: A comparison between two neighbourhoods. Sustain. Cities Soc. 2018, 38, 80–90. [Google Scholar] [CrossRef]
- Ramos, N.M.; Almeida, R.M.; Curado, A.; Pereira, P.F.; Manuel, S.; Maia, J. Airtightness and ventilation in a mild climate country rehabilitated social housing buildings—What users want and what they get. Build. Environ. 2015, 92, 97–110. [Google Scholar] [CrossRef]
- Al-Zoughool, M.; Krewski, D. Health effects of radon: A review of the literature. Int. J. Radiat. Biol. 2009, 85, 57–69. [Google Scholar] [CrossRef]
- Darby, S.; Hill, D.; Auvinen, A.; Barros-Dios, J.; Baysson, H.; Bochicchio, F.; Deo, H.; Falk, R.; Forastiere, F.; Hakama, M. Radon in homes and risk of lung cancer: Collaborative analysis of individual data from 13 European case-control studies. BMJ 2005, 330, 223. [Google Scholar] [CrossRef] [Green Version]
- Gunby, J.; Darby, S.; Miles, J.; Green, B.; Cox, D. Factors affecting indoor radon concentrations in the United Kingdom. Health Phys. 1993, 64, 2–12. [Google Scholar] [CrossRef]
- Darby, S.; Hill, D.; Deo, H.; Auvinen, A.; Barros-Dios, J.M.; Baysson, H.; Bochicchio, F.; Falk, R.; Farchi, S.; Figueiras, A. Residential radon and lung cancer—Detailed results of a collaborative analysis of individual data on 7148 persons with lung cancer and 14 208 persons without lung cancer from 13 epidemiologic studies in Europe. Scand. J. Work Environ. Health 2006, 32, 1–84. [Google Scholar]
- Alberg, A.J.; Brock, M.V.; Samet, J.M. Epidemiology of lung cancer: Looking to the future. J. Clin. Oncol. 2005, 23, 3175–3185. [Google Scholar] [CrossRef]
- Krewski, D.; Lubin, J.H.; Zielinski, J.M.; Alavanja, M.; Catalan, V.S.; William Field, R.; Klotz, J.B.; Létourneau, E.G.; Lynch, C.F.; Wilcox, H.B.; et al. A combined analysis of North American case-control studies of residential radon and lung cancer. J. Toxicol. Environ. Health Part A 2006, 69, 533–597. [Google Scholar] [CrossRef] [Green Version]
- Blot, W.J.; Xu, Z.-Y.; Boice, J.D.; Zhao, D.-Z.; Stone, B.J.; Sun, J.; Jing, L.-B.; Fraumeni, J.F. Indoor radon and lung cancer in China. JNCI J. Natl. Cancer Inst. 1990, 82, 1025–1030. [Google Scholar] [CrossRef] [PubMed]
- Whiteside, M.; Herndon, J.M. Coal fly ash aerosol: Risk factor for lung cancer. J. Adv. Med. Med. Res. 2018, 25, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Darby, S.; Hill, D.; Doll, R. Radon: A likely carcinogen at all exposures. Ann. Oncol. 2001, 12, 1341–1351. [Google Scholar] [CrossRef] [PubMed]
- Sundal, A.; Henriksen, H.; Soldal, O.; Strand, T. The influence of geological factors on indoor radon concentrations in Norway. Sci. Total Environ. 2004, 328, 41–53. [Google Scholar] [CrossRef]
- Borgoni, R.; De Francesco, D.; De Bartolo, D.; Tzavidis, N. Hierarchical modeling of indoor radon concentration: How much do geology and building factors matter? J. Environ. Radioact. 2014, 138, 227–237. [Google Scholar] [CrossRef]
- Macq, H.; Tancoigne, É.; Strasser, B.J. From deliberation to production: Public participation in Science and Technology policies of the European Commission (1998–2019). Minerva 2020, 58, 489–512. [Google Scholar] [CrossRef]
- Kenens, J.; Van Oudheusden, M.; Yoshizawa, G.; Van Hoyweghen, I. Science by, with and for citizens: Rethinking ‘citizen science’ after the 2011 Fukushima disaster. Palgrave Commun. 2020, 6, 58. [Google Scholar] [CrossRef] [Green Version]
- Suarez Mahou, E.; Fernandez Amigot, J. Results and applications of the Marna project. Segur. Nucl. 1997, 4, 15–22. [Google Scholar]
- Poncela, L.Q.; Fernández, P.; Arozamena, J.G.; Sainz, C.; Fernández, J.; Mahou, E.S.; Matarranz, J.M.; Cascón, M. Natural gamma radiation map (MARNA) and indoor radon levels in Spain. Environ. Int. 2004, 29, 1091–1096. [Google Scholar] [CrossRef]
- Fernández, C.S.; Poncela, L.Q.; Villar, A.F.; Merino, I.F.; Gutierrez-Villanueva, J.L.; González, S.C.; López, L.Q.; López, J.Q.; Fernández, E.; Tejerina, J.R. Spanish experience on the design of radon surveys based on the use of geogenic information. J. Environ. Radioact. 2017, 166, 390–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sainz-Fernandez, C.; Fernandez-Villar, A.; Fuente-Merino, I.; Gutierrez-Villanueva, J.; Martin-Matarranz, J.; Garcia-Talavera, M.; Casal-Ordas, S.; Quindós-Poncela, L. The Spanish indoor radon mapping strategy. Radiat. Prot. Dosim. 2014, 162, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Cecil, L.D.; Green, J.R. Radon-222. Environmental Tracers in Subsurface Hydrology; Springer: Berlin/Heidelberg, Germany, 2000; pp. 175–194. [Google Scholar]
- Domingos, F.P.; Sêco, S.L.; Pereira, A.J. Thoron and radon exhalation and emanation from granitic rocks outcropping in the Central Iberian Zone (Portugal). Environ. Earth Sci. 2021, 80, 1–18. [Google Scholar] [CrossRef]
- Wilkening, M. Radon in the Environment; Elsevier: Amsterdam, The Netherlands, 1990. [Google Scholar]
- Weigel, F. Radon. Chem. Ztg 1978, 102, 287–299. [Google Scholar]
- Sêco, S.L.; Domingos, F.P.; Pereira, A.J.; Duarte, L.V. Estimation of the radon production potential in sedimentary rocks: A case study in the Lower and Middle Jurassic of the Lusitanian Basin (Portugal). J. Environ. Radioact. 2020, 220, 106272. [Google Scholar] [CrossRef]
- Domingos, F.; Pereira, A. Implications of alteration processes on radon emanation, radon production rate and W-Sn exploration in the Panasqueira ore district. Sci. Total Environ. 2018, 622, 825–840. [Google Scholar] [CrossRef]
- Otton, J.K. The Geology of Radon; Government Printing Office: Washington, DC, USA, 1992.
- Louro, A.; Peralta, L.; Soares, S.; Pereira, A.; Cunha, G.; Belchior, A.; Ferreira, L.; Monteiro Gil, O.; Louro, H.; Pinto, P. Human exposure to indoor radon: A survey in the region of Guarda, Portugal. Radiat. Prot. Dosim. 2013, 154, 237–244. [Google Scholar] [CrossRef]
- Imme, G.; Catalano, R.; Mangano, G.; Morelli, D. Radon exhalation measurements for environmental and geophysics study. Radiat. Phys. Chem. 2014, 95, 349–351. [Google Scholar] [CrossRef]
- Silva, A.S.; Dinis, M.d.L.; Pereira, A. Indoor radon levels in thermal spas and the compliance with the European BSS directive: A Portuguese case study. In Occupational and Environmental Safety and Health II; Springer: Berlin/Heidelberg, Germany, 2020; pp. 163–171. [Google Scholar]
- George, A. Environmental Radon and Radon Daughters; IAEA: Vienna, Austria, 1980. [Google Scholar]
- World Health Organization. Evolution of WHO Air Quality Guidelines: Past, Present and Future; WHO: Genova, Switzerland, 2017. [Google Scholar]
- Hewitt, C.; Kelly, M. Environmental radon: A brief review. Environ. Technol. 1990, 11, 387–392. [Google Scholar] [CrossRef]
- Casey, J.A.; Ogburn, E.L.; Rasmussen, S.G.; Irving, J.K.; Pollak, J.; Locke, P.A.; Schwartz, B.S. Predictors of indoor radon concentrations in Pennsylvania, 1989–2013. Environ. Health Perspect. 2015, 123, 1130–1137. [Google Scholar] [CrossRef]
- Stojanovska, Z.; Januseski, J.; Bossew, P.; Zunic, Z.S.; Tollefsen, T.; Ristova, M. Seasonal indoor radon concentration in FYR of Macedonia. Radiat. Meas. 2011, 46, 602–610. [Google Scholar] [CrossRef]
- Alghamdi, A.S.; Aleissa, K.A. Influences on indoor radon concentrations in Riyadh, Saudi Arabia. Radiat. Meas. 2014, 62, 35–40. [Google Scholar] [CrossRef]
- Nero, A.V.; Nazaroff, W. Characterising the source of radon indoors. Radiat. Prot. Dosim. 1984, 7, 23–39. [Google Scholar] [CrossRef]
- Appleton, J.; Miles, J. A statistical evaluation of the geogenic controls on indoor radon concentrations and radon risk. J. Environ. Radioact. 2010, 101, 799–803. [Google Scholar] [CrossRef]
- Neznal, M.; Neznal, M.; Matolin, M.; Barnet, I.; Miksova, J. The New Method for Assessing the Radon Risk of Building Sites; Czech Geological Survey Prague: Prague, Czech Republic, 2004. [Google Scholar]
- Bossew, P.; Cinelli, G.; Ciotoli, G.; Crowley, Q.G.; De Cort, M.; Elío Medina, J.; Gruber, V.; Petermann, E.; Tollefsen, T. Development of a geogenic radon hazard index—Concept, history, experiences. Int. J. Environ. Res. Public Health 2020, 17, 4134. [Google Scholar] [CrossRef]
- Petermann, E.; Bossew, P. Mapping indoor radon hazard in Germany: The geogenic component. Sci. Total Environ. 2021, 780, 146601. [Google Scholar] [CrossRef]
- Lopes, S.I.; Moreira, P.M.; Cruz, A.M.; Martins, P.; Pereira, F.; Curado, A. RnMonitor: A WebGIS-based platform for expedite in situ deployment of IoT edge devices and effective Radon Risk Management. In Proceedings of the 2019 IEEE International Smart Cities Conference (ISC2), Casablanca, Morocco, 14–17 October 2019. [Google Scholar]
- Gruber, V.; Baumann, S.; Alber, O.; Laubbichler, C.; Bossew, P.; Petermann, E.; Ciotoli, G.; Pereira, A.; Domingos, F.; Tondeur, F. Comparison of radon mapping methods for the delineation of radon priority areas—An exercise. J. Eur. Radon Assoc. 2021, 2. [Google Scholar] [CrossRef]
- Ielsch, G.; Ferry, C.; Tymen, G.; Robe, M. Study of a predictive methodology for quantification and mapping of the radon-222 exhalation rate. J. Environ. Radioact. 2002, 63, 15–33. [Google Scholar] [CrossRef]
- Szabó, K.Z.; Jordan, G.; Horváth, Á.; Szabó, C. Mapping the geogenic radon potential: Methodology and spatial analysis for central Hungary. J. Environ. Radioact. 2014, 129, 107–120. [Google Scholar] [CrossRef]
- Pasculli, A.; Palermi, S.; Sarra, A.; Piacentini, T.; Miccadei, E. A modelling methodology for the analysis of radon potential based on environmental geology and geographically weighted regression. Environ. Model. Softw. 2014, 54, 165–181. [Google Scholar] [CrossRef]
- Sam, A.K.; Ahmed, M.; El Khangi, F.; El Nigumi, Y.; Holm, E. Assessment of terrestrial gamma radiation in Sudan. Radiat. Prot. Dosim. 1997, 71, 141–145. [Google Scholar] [CrossRef]
- Saghatchi, F.; Salouti, M.; Eslami, A. Assessment of annual effective dose due to natural gamma radiation in Zanjan (Iran). Radiat. Prot. Dosim. 2008, 132, 346–349. [Google Scholar] [CrossRef] [PubMed]
- Alomari, A.H.; Saleh, M.A.; Hashim, S.; Alsayaheen, A. Investigation of natural gamma radiation dose rate (GDR) levels and its relationship with soil type and underlying geological formations in Jordan. J. Afr. Earth Sci. 2019, 155, 32–42. [Google Scholar] [CrossRef]
- Quindós, L.; Fernández, P.; Sainz, C.; Fuente, I.; Nicolás, J.; Quindós, L.; Arteche, J. Indoor radon in a Spanish region with different gamma exposure levels. J. Environ. Radioact. 2008, 99, 1544–1547. [Google Scholar] [CrossRef]
- Andjelov, M.; Brajnik, D. Map of natural radioactivity and radon emanation in Slovenia. Environ. Int. 1996, 22, 799–804. [Google Scholar] [CrossRef]
- Lopes, S.I.; Nunes, L.J.; Curado, A. Designing an Indoor Radon Risk Exposure Indicator (IRREI): An Evaluation Tool for Risk Management and Communication in the IoT Age. Int. J. Environ. Res. Public Health 2021, 18, 7907. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunes, L.J.R.; Curado, A.; Azevedo, R.; Silva, J.P.; Lopes, N.; Lopes, S.I. Designing a Multicriteria WebGIS-Based Pre-Diagnosis Tool for Indoor Radon Potential Assessment. Appl. Sci. 2022, 12, 1412. https://doi.org/10.3390/app12031412
Nunes LJR, Curado A, Azevedo R, Silva JP, Lopes N, Lopes SI. Designing a Multicriteria WebGIS-Based Pre-Diagnosis Tool for Indoor Radon Potential Assessment. Applied Sciences. 2022; 12(3):1412. https://doi.org/10.3390/app12031412
Chicago/Turabian StyleNunes, Leonel J. R., António Curado, Rolando Azevedo, Joaquim P. Silva, Nuno Lopes, and Sérgio Ivan Lopes. 2022. "Designing a Multicriteria WebGIS-Based Pre-Diagnosis Tool for Indoor Radon Potential Assessment" Applied Sciences 12, no. 3: 1412. https://doi.org/10.3390/app12031412
APA StyleNunes, L. J. R., Curado, A., Azevedo, R., Silva, J. P., Lopes, N., & Lopes, S. I. (2022). Designing a Multicriteria WebGIS-Based Pre-Diagnosis Tool for Indoor Radon Potential Assessment. Applied Sciences, 12(3), 1412. https://doi.org/10.3390/app12031412