Characterizing the Grating-like Nanostructures Formed on BaF2 Surfaces Exposed to Extreme Ultraviolet Laser Radiation
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Experimental Results
3.2. Discussion and Outlook
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rocca, J.J. Table-top soft X-ray lasers. Rev. Sci. Instrum. 1999, 70, 3799–3827. [Google Scholar] [CrossRef]
- Nejdl, J.; Howlett, I.D.; Carlton, D.; Anderson, E.H.; Chao, W.; Marconi, M.C.; Rocca, J.J.; Menoni, C.S. Image plane holographic microscopy with a table-top soft X-ray laser. IEEE Photonics J. 2015, 7, 1–8. [Google Scholar] [CrossRef]
- Sandberg, R.L.; Song, C.; Wachulak, P.W.; Raymondson, D.A.; Paul, A.; Amirbekian, B.; Lee, E.; Sakdinawat, A.E.; La-O-Vorakiat, C.; Marconi, M.C.; et al. High numerical aperture tabletop soft x-ray diffraction microscopy with 70-nm resolution. Proc. Natl. Acad. Sci. USA 2008, 105, 24–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juha, L.; Bittner, M.; Chvostova, D.; Krasa, J.; Otcenasek, Z.; Präg, A.G.; Ullschmied, J.; Pientka, Z.; Krzywinski, J.; Pelka, J.B.; et al. Ablation of organic polymers by 46.9-nm laser radiation. Appl. Phys. Lett. 2005, 86, 034109. [Google Scholar] [CrossRef] [Green Version]
- Kolacek, K.; Schmidt, J.; Straus, J.; Frolov, O.; Juha, L.; Chalupsky, J. Interaction of extreme ultraviolet laser radiation with solid surface: Ablation, desorption, nanostructuring. In Proceedings of the SPIE 9255, XX International Symposium on High Power Laser Systems and Applications 2014, Chengdu, China, 3 February 2015; p. 92553U. [Google Scholar]
- Vaschenko, G.; Etxarri, A.G.; Menoni, C.S.; Rocca, J.J. Nanometer-scale ablation with a table-top soft X-ray laser. Opt. Lett. 2006, 31, 3615–3617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolacek, K.; Schmidt, J.; Straus, J.; Frolov, O.; Prukner, V.; Melich, R.; Psota, P. Spontaneous and artificial direct nanostructuring of solid surface by extreme ultraviolet laser with nanosecond pulses. Laser Part. Beams 2016, 34, 11–22. [Google Scholar] [CrossRef]
- Capeluto, M.G.; Vaschenko, G.; Grisham, M.; Marconi, M.; Luduena, S.; Pietrasanta, L.; Lu, Y.; Parkinson, B.; Menoni, C.; Rocca, J.J. Nanopatterning with interferometric lithography using a compact λ=46.9-nm laser. IEEE Trans. Nanotechnol. 2006, 5, 3–7. [Google Scholar] [CrossRef]
- Wachulak, P.W.; Capeluto, M.G.; Marconi, M.C.; Patel, D.; Menoni, C.S.; Rocca, J.J. Nanoscale patterning in high resolution HSQ photoresist by interferometric lithography with tabletop extreme ultraviolet lasers. J. Vac. Sci. Technol. B 2007, 25, 2094–2097. [Google Scholar] [CrossRef]
- Wachulak, P.; Grisham, M.; Heinbuch, S.; Martz, D.; Rockward, W.; Hill, D.; Rocca, J.J.; Menoni, C.S.; Anderson, E.; Marconi, M. Interferometric lithography with an amplitude division interferometer and a desktop extreme ultraviolet laser. J. Opt. Soc. Am. B 2008, 25, B104–B107. [Google Scholar] [CrossRef] [Green Version]
- Birnbaum, M. Semiconductor surface damage produced by ruby lasers. J. Appl. Phys. 1965, 36, 3688–3689. [Google Scholar] [CrossRef]
- Sipe, J.E.; Young, J.F.; Preston, J.S.; Van Driel, H.M. Laser-induced periodic surface structure. I. Theory. Phys. Rev. B 1983, 27, 1141–1154. [Google Scholar] [CrossRef]
- Tousey, R. XUV—The extreme ultraviolet. J. Opt. Soc. Am. 1962, 52, 1186–1187. [Google Scholar] [CrossRef]
- Bakshi, V. (Ed.) EUV Lithography; SPIE Press-Wiley Interscience: Bellingham, NY, USA, 2009. [Google Scholar]
- Steeg, B.; Juha, L.; Feldhaus, J.; Jacobi, S.; Sobierajski, R.; Michaelsen, C.; Andrejczuk, A.; Krzywinski, J. Total reflection amorphous carbon mirrors for vacuum ultraviolet free electron lasers. Appl. Phys. Lett. 2004, 84, 657–659. [Google Scholar] [CrossRef]
- Juha, L.; Bittner, M.; Chvostova, D.; Krasa, J.; Kozlov, M.; Pfeifer, M.; Polan, J.; Präg, A.R.; Rus, B.; Stupka, M.; et al. Short-wavelength ablation of molecular solids: Pulse duration and wavelength effects. J. Microlithogr. Microfabr. Microsyst. 2005, 4, 033007. [Google Scholar] [CrossRef] [Green Version]
- Hahn, D. Calcium fluoride and barium fluoride crystals in optics: Multispectral optical materials for a wide spectrum of applications. Opt. Photonik 2014, 9, 45–48. [Google Scholar] [CrossRef]
- Wels, A.F. Structural Inorganic Chemistry, 3rd ed.; Clarendon Press: Oxford, UK, 1962; p. 337. [Google Scholar]
- Zhao, Y.; Cui, H.; Zhang, S.; Zhang, W.; Li, W. Formation of nanostructures induced by capillary-discharge soft X-ray laser on BaF2 surfaces. Appl. Surf. Sci. 2017, 396, 1201–1205. [Google Scholar] [CrossRef]
- Kolacek, K.; Schmidt, J.; Straus, J.; Frolov, O. Calibration of windowless photodiode for extreme ultraviolet pulse energy measurement. Appl. Opt. 2015, 54, 10454–10459. [Google Scholar] [CrossRef]
- Schmidt, J.; Kolacek, K.; Frolov, O.; Straus, J.; Hoffer, P.; Stelmashuk, V.; Tuholukov, A.; Jiricek, P.; Houdkova, J. Long-term changes in Al thin-film extreme ultraviolet filters. Appl. Opt. 2021, 60, 8766. [Google Scholar] [CrossRef]
- Chalupsky, J.; Bohacek, P.; Hajkova, V.; Hau-Riege, S.P.; Heimann, P.A.; Juha, L.; Krzywinski, J.; Messerschmidt, M.; Moeller, S.P.; Nagler, B.; et al. Comparing different approaches to characterization of focused X-ray laser beams. Nucl. Instrum. Methods Phys. Res. A 2011, 631, 130–133. [Google Scholar] [CrossRef]
- Gerasimova, N.; Dziarzhytski, S.; Weigelt, H.; Chalupský, J.; Hájková, V.; Vysin, L.; Juha, L. In situ focus characterization by ablation technique to enable optics alignment at an XUV FEL source. Rev. Sci. Instrum. 2013, 84, 65104. [Google Scholar] [CrossRef] [Green Version]
- Kolacek, K.; Schmidt, J.; Straus, J.; Frolov, O.; Prukner, V.; Melich, R.; Choukourov, A. A new method of determination of ablation threshold contour in the spot of focused XUV laser beam of nanosecond duration. In Proceedings of the SPIE 777, Damage to VUV, EUV, and X-ray Optics IV; and EUV and X-ray Optics: Synergy between Laboratory and Space II, Prague, Czech Republic, 3 May 2013; p. 87770N. [Google Scholar]
- Chalupský, J.; Krzywinski, J.; Juha, L.; Hájková, V.; Cihelka, J.; Burian, T.; Vyšín, L.; Gaudin, J.; Gleeson, A.; Jurek, M.; et al. Spot size characterization of focused non-Gaussian X-ray laser beams. Opt. Express 2010, 18, 27836–27845. [Google Scholar] [CrossRef]
- Lee, H. Picosecond mid-IR laser induced surface damage on gallium phosphate (GaP) and calcium fluoride (CaF2). J. Mech. Sci. Technol. 2007, 21, 1077–1082. [Google Scholar] [CrossRef]
- Costache, F.; Henyk, M.; Reif, J. Modification of dielectric surfaces with ultra-short laser pulses. Appl. Surf. Sci. 2002, 186, 352–357. [Google Scholar] [CrossRef]
- Reif, J.; Costache, F.; Henyk, M.; Pandelov, S.V. Ripples revisited: Non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics. Appl. Surf. Sci. 2002, 197–198, 891–895. [Google Scholar] [CrossRef]
- Costache, F.; Henyk, M.; Reif, J. Surface patterning on insulators upon femtosecond laser ablation. Appl. Surf. Sci. 2003, 208–209, 486–491. [Google Scholar] [CrossRef]
- Sils, J.; Reichling, M.; Matthias, E.; Johansen, H. Laser damage and ablation of differently prepared CaF2(111) surfaces. Czechoslov. J. Phys. 1999, 49, 1737–1742. [Google Scholar] [CrossRef]
- Reichling, M. Laser ablation in optical components and thin films. Exp. Methods Phys. Sci. 1997, 573–624. [Google Scholar] [CrossRef]
- Moses, L.M.; Farnsworth, P.B. Evaluation of particle size distributions produced during ultra-violet nanosecond laser ablation and their relative contributions to ion densities in the inductively coupled plasma. Spectrochim. Acta B 2015, 113, 54–62. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Duan, Y.Z.; Tian, Z.N.; Zhang, Y.L.; Chen, Q.D.; Gao, B.R.; Sun, H.B. Laser-induced color centers in crystals. Opt. Laser Technol. 2022, 146, 107527. [Google Scholar] [CrossRef]
- Saleem, U.; Birowosuto, M.D.; Hou, S.; Maurice, A.; Kang, T.B.; Teo, E.H.T.; Tchernycheva, M.; Gogneau, N.; Wang, H. Light emission from localised point defects induced in GaN crystal by femtosecond-pulsed laser. Opt. Mater. Express 2011, 8, 2703–2712. [Google Scholar] [CrossRef]
- Rix, S.; Natura, U.; Loske, F.; Letz, M.; Felser, C.; Reichling, M. Formation of metallic colloids in CaF2 by intense ultraviolet light. Appl. Phys. Lett. 2011, 99, 261909. [Google Scholar] [CrossRef]
- Cramer, L.P.; Langford, S.C.; Dickinson, J.T. The formation of metallic nanoparticles in single crystal CaF2 under 157 nm excimer laser irradiation. J. Appl. Phys. 2006, 99, 054305. [Google Scholar] [CrossRef]
- Ritucci, A.; Tomassetti, G.; Reale, A.; Arrizza, L.; Zuppella, P.; Reale, L.; Palladino, L.; Flora, F.; Bonfigli, F.; Faenov, A.; et al. Damage and ablation of large bandgap dielectrics induced by a 46.9 nm laser beam. Opt. Lett. 2006, 31, 68–70. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, M.; Azuma, J.; Asaka, S.; Tsujibayashi, T.; Arimoto, O.; Nakanishi, S.; Itoh, H.; Kamada, M. Photostimulated detection of defect formation in BaF2 under irradiation of synchrotron radiation. Phys. Status Solidi (b) 2012, 250, 396–401. [Google Scholar] [CrossRef]
- Bennewitz, R.; Smith, D.; Reichling, M. Bulk and surface processes in low-energy-electron-induced decomposition of CaF2. Phys. Rev. B 1999, 59, 8237–8246. [Google Scholar] [CrossRef]
- Henke, B.L.; Gullikson, E.M.; Davis, J.C. X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92. At. Data Nucl. Data Tables 1993, 54, 181–342. [Google Scholar] [CrossRef] [Green Version]
- X-ray Interactions with Matter. Available online: http://henke.lbl.gov/optical_constants/ (accessed on 15 September 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, H.; Frolov, A.; Schmidt, J.; Straus, J.; Burian, T.; Hajkova, V.; Chalupsky, J.; Zhao, Y.; Kolacek, K.; Juha, L. Characterizing the Grating-like Nanostructures Formed on BaF2 Surfaces Exposed to Extreme Ultraviolet Laser Radiation. Appl. Sci. 2022, 12, 1251. https://doi.org/10.3390/app12031251
Cui H, Frolov A, Schmidt J, Straus J, Burian T, Hajkova V, Chalupsky J, Zhao Y, Kolacek K, Juha L. Characterizing the Grating-like Nanostructures Formed on BaF2 Surfaces Exposed to Extreme Ultraviolet Laser Radiation. Applied Sciences. 2022; 12(3):1251. https://doi.org/10.3390/app12031251
Chicago/Turabian StyleCui, Huaiyu, Alexandr Frolov, Jiri Schmidt, Jaroslav Straus, Tomas Burian, Vera Hajkova, Jaromir Chalupsky, Yongpeng Zhao, Karel Kolacek, and Libor Juha. 2022. "Characterizing the Grating-like Nanostructures Formed on BaF2 Surfaces Exposed to Extreme Ultraviolet Laser Radiation" Applied Sciences 12, no. 3: 1251. https://doi.org/10.3390/app12031251