Accelerated Testing and Reliability of FDM-Based Structural Electronics
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perelaer, J.; Smith, P.J.; Mager, D.; Soltman, D.; Volkman, S.K.; Subramanian, V.; Korvink, J.G.; Schubert, U.S. Printed electronics: The challenges involved in printing devices, interconnects, and contacts based on inorganic materials. J. Mater. Chem. 2010, 20, 8446. [Google Scholar] [CrossRef]
- Kang, J.; Tok, J.B.H.; Bao, Z. Self-healing soft electronics. Nat. Electron. 2019, 2, 144–150. [Google Scholar] [CrossRef]
- Rogers, J.A. Electronics for the human body. JAMA J. Am. Med. Assoc. 2015, 313, 561–562. [Google Scholar] [CrossRef] [PubMed]
- Lunca Popa, P.; Crêpellière, J.; Nukala, P.; Leturcq, R.; Lenoble, D. Invisible electronics: Metastable Cu-vacancies chain defects for highly conductive p-type transparent oxide. Appl. Mater. Today 2017, 9, 184–191. [Google Scholar] [CrossRef]
- Joe Lopes, A.; MacDonald, E.; Wicker, R.B. Integrating stereolithography and direct print technologies for 3D structural electronics fabrication. Rapid Prototyp. J. 2012, 18, 129–143. [Google Scholar] [CrossRef]
- Espalin, D.; Muse, D.W.; MacDonald, E.; Wicker, R.B. 3D Printing multifunctionality: Structures with electronics. Int. J. Adv. Manuf. Technol. 2014, 72, 963–978. [Google Scholar] [CrossRef]
- Giordano, G. Plastics Get Flexible for Electronics. Plast. Eng. 2016, 72, 14–21. [Google Scholar] [CrossRef]
- Fink, D.G. Transistors versus Vacuum Tubes. Proc. IRE 1956, 44, 479–482. [Google Scholar] [CrossRef]
- Falck, J.; Felgemacher, C.; Rojko, A.; Liserre, M.; Zacharias, P. Reliability of Power Electronic Systems. IEEE Ind. Electron. Mag. 2018, 12, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Arsenault, J.E.; Roberts, J.A. Reliability and Maintainability of Electronic Systems; Pitman Publishing: London, UK, 1980; ISBN 9780273014768. [Google Scholar]
- Zanoni, E.; Pavan, P. Improving the Reliability and Safety of Automotive Electronics. IEEE Micro 1993, 13, 30–48. [Google Scholar] [CrossRef]
- Yang, S.; Xiang, D.; Bryant, A.; Mawby, P.; Ran, L.; Tavner, P. Condition monitoring for device reliability in power electronic converters: A review. IEEE Trans. Power Electron. 2010, 25, 2734–2752. [Google Scholar] [CrossRef]
- Baylakoglu, I.; Hedin, E. PCB Delamination. In The ELFNET Book on Failure Mechanisms, Testing Methods, and Quality Issues of Lead-Free Solder Interconnects; Springer: London, UK, 2011; pp. 275–282. [Google Scholar]
- Vicenzo, A. Tin Whiskers. In The ELFNET Book on Failure Mechanisms, Testing Methods, and Quality Issues of Lead-Free Solder Interconnects; Springer: London, UK, 2011; pp. 123–159. [Google Scholar]
- Dušek, K.; Bušek, D.; Veselý, P. Overview of Selected Issues Related to Soldering. In Welding—Modern Topics; IntechOpen: London, UK, 2021. [Google Scholar]
- Hermans, M.J.M.; Biglari, M.H. Void Formation by Kirkendall Effect in Solder Joints. In The ELFNET Book on Failure Mechanisms, Testing Methods, and Quality Issues of Lead-Free Solder Interconnects; Springer: London, UK, 2011; pp. 105–122. [Google Scholar]
- Maqsood, N.; Rimašauskas, M. Delamination observation occurred during the flexural bending in additively manufactured PLA-short carbon fiber filament reinforced with continuous carbon fiber composite. Results Eng. 2021, 11, 100246. [Google Scholar] [CrossRef]
- Keleş, Ö.; Blevins, C.W.; Bowman, K.J. Effect of build orientation on the mechanical reliability of 3D printed ABS. Rapid Prototyp. J. 2017, 23, 320–328. [Google Scholar] [CrossRef]
- Ellerman, P. Calculating Reliability using FIT & MTTF: Arrhenius HTOL Model. MicroNote 2012, 1002, 1–6. [Google Scholar]
- Kristiawan, R.B.; Imaduddin, F.; Ariawan, D.; Ubaidillah; Arifin, Z. A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters. Open Eng. 2021, 11, 639–649. [Google Scholar] [CrossRef]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Jiang, T.; Munguia-Lopez, J.G.; Flores-Torres, S.; Kort-Mascort, J.; Kinsella, J.M. Extrusion bioprinting of soft materials: An emerging technique for biological model fabrication. Appl. Phys. Rev. 2019, 6, 011310. [Google Scholar] [CrossRef]
- Jianping, L.; Guiling, D. Technology Development and Basic Theory Study of Fluid Dispensing—A Review. In Proceedings of the Sixth IEEE CPMT Conference on High Density Microsystem Design and Packaging and Component Failure Analysis (HDP ’04), Shanghai, China, 3 July 2004; pp. 198–205. [Google Scholar]
- Mandrycky, C.; Wang, Z.; Kim, K.; Kim, D.-H. 3D bioprinting for engineering complex tissues. Biotechnol. Adv. 2016, 34, 422–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayle, F.; Mettas, A. Temperature Acceleration Models in Reliability Predictions: Justification & Improvements. In Proceedings of the Annual Reliability and Maintainability Symposium, San Jose, CA, USA, 25–28 January 2010. [Google Scholar]
- Pecht, M.G.; Shukla, A.A.; Kelkar, N.; Pecht, J. Criteria for the assessment of reliability models. IEEE Trans. Components Packag. Manuf. Technol. Part B 1997, 20, 229–233. [Google Scholar] [CrossRef]
- Lakshminarayanan, V.; Sriraam, N. The Effect of Temperature on the Reliability of Electronic Components. In Proceedings of the IEEE CONECCT 2014—2014 IEEE International Conference on Electronics, Computing and Communication Technologies, Bangalore, India, 6–7 January 2014. [Google Scholar]
- Holcomb, D.P.; North, J.C. An Infant Mortality and Long-Term Failure Rate Model for Electronic Equipment. AT&T Tech. J. 1985, 64, 15–31. [Google Scholar] [CrossRef]
- Huai, W.; Liserre, M.; Blaabjerg, F.; De Place Rimmen, P.; Jacobsen, J.B.; Kvisgaard, T.; Landkildehus, J. Transitioning to physics-of-failure as a reliability driver in power electronics. IEEE J. Emerg. Sel. Top. Power Electron. 2014, 2, 97–114. [Google Scholar] [CrossRef]
- Magdassi, S.; Grouchko, M.; Kamyshny, A. Copper Nanoparticles for Printed Electronics: Routes Towards Achieving Oxidation Stability. Materials 2010, 3, 4626–4638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, T.B.; Chen, Y.; Chung, C.H.; Yang, Y.; Bob, B.; Duan, H.S.; Li, G.; Tu, K.N.; Huang, Y. Nanoscale joule heating and electromigration enhanced ripening of silver nanowire contacts. ACS Nano 2014, 8, 2804–2811. [Google Scholar] [CrossRef] [PubMed]
- Trzaska, Z.; Monchoux, J.P. Electromigration experiments by spark plasma sintering in the silver-zinc system. J. Alloy. Compd. 2015, 635, 142–149. [Google Scholar] [CrossRef]
- Horo, J.; Harne, P.G.; Nayak, B.B.; Vitta, S. Low temperature coefficient of resistivity Ag-Cd and Ag-Sn alloys—Structure and transport. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2004, 107, 53–57. [Google Scholar] [CrossRef]
- Liu, J.H.; Lin, Y.C.; Lue, J.T.; Wu, C.J. Resistivity measurements of layered metallic films at various microwave frequencies and temperatures using the micro-strip T-junction method. Meas. Sci. Technol. 2002, 13, 1132–1137. [Google Scholar] [CrossRef]
- Yamashita, M.; Suganuma, K. Degradation mechanism of Ag-epoxy conductive adhesive/Sn-Pb plating interface by heat exposure. J. Electron. Mater. 2002, 31, 551–556. [Google Scholar] [CrossRef]
Group Name | Number of Samples in the Group (D) | Number of Samples with Resistors | Test Time (H), h | MTTF, h |
---|---|---|---|---|
A | 21 | 6 | 0.67 | 200 |
B | 14 | 12 | 2 | 400 |
C | 35 | 12 | 17 | 8000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wałpuski, B.; Słoma, M. Accelerated Testing and Reliability of FDM-Based Structural Electronics. Appl. Sci. 2022, 12, 1110. https://doi.org/10.3390/app12031110
Wałpuski B, Słoma M. Accelerated Testing and Reliability of FDM-Based Structural Electronics. Applied Sciences. 2022; 12(3):1110. https://doi.org/10.3390/app12031110
Chicago/Turabian StyleWałpuski, Bartłomiej, and Marcin Słoma. 2022. "Accelerated Testing and Reliability of FDM-Based Structural Electronics" Applied Sciences 12, no. 3: 1110. https://doi.org/10.3390/app12031110
APA StyleWałpuski, B., & Słoma, M. (2022). Accelerated Testing and Reliability of FDM-Based Structural Electronics. Applied Sciences, 12(3), 1110. https://doi.org/10.3390/app12031110