Mechanical Properties of Lamellar Shale Considering the Effect of Rock Structure and Hydration from Macroscopic and Microscopic Points of View
Abstract
:1. Introduction
2. Samples and Methods
2.1. Samples
2.2. Experimental Procedure
2.2.1. Compression Experiments
2.2.2. CT Scanning Experiment
3. Results and Analysis
3.1. Comparison of Mechanical Properties between Bedding Shale and Lamellar Shale
3.2. Anisotropic Mechanical Properties of Lamellar Shale
3.3. Influence of Hydration on Mechanical Properties of Lamellar Shale
3.4. Failure Characteristics of Lamellar Shale
3.5. Microstructure Characteristics of Lamellar Shale
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- U.S. Energy Information Administration. Energy Information Administration. World Shale Resource Assessments [EB/OL]. Available online: https://www.eia.gov/analysis/studies/worldshalegas/ (accessed on 24 September 2015).
- Reynolds, D.; Umekwe, M. Shale-oil development prospects: The role of shale-gas in developing shale-oil. Energies 2019, 12, 3331. [Google Scholar] [CrossRef] [Green Version]
- Philp, R.; Degarmo, C. Geochemical characterization of the Devonian-Mississippian Woodford Shale from the McAlister Cemetery Quarry, Criner Hills Uplift, Ardmore Basin, Oklahoma—ScienceDirect. Mar. Pet. Geol. 2020, 112, 104078. [Google Scholar] [CrossRef]
- Ion-Danut, J.; Mariana, J. The current stage of shale gas exploration and exploitation in european countries compared to the U.S. situation. Ovidius Univ. Ann. 2013, 13, 825–830. [Google Scholar]
- Nie, X.; Lu, J.; Djaroun, R.R.; Wang, P.; Zhang, C.; Li, J. Oil content prediction of lacustrine organic-rich shale from wireline logs: A case study of intersalt reservoirs in the qianjiang sag, jianghan basin, China. Interpretation 2020, 8, 79–88. [Google Scholar] [CrossRef]
- Hu, Q.; Zhang, Y.; Meng, X.; Zheng, L.; Xie, Z.; Li, M. Characterization of micro-nano pore networks in shale oil reservoirs of paleogene shahejie formation in dongying sag of bohai bay basin, east china. Pet. Explor. Dev. 2017, 44, 720–730. [Google Scholar] [CrossRef]
- Shi, Z.; Qiu, Z.; Dong, D.; Lu, B.; Liang, P. Laminae characteristics of gas-bearing shale fine-grained sediment of the Silurian Longmaxi Formation of Well Wuxi 2 in Sichuan Basin, SW China. Pet. Explor. Dev. 2018, 2, 358–368. [Google Scholar] [CrossRef]
- Baird, A.F.; Kendall, J.M.; Fisher, Q.J.; Budge, J. The role of texture, cracks, and fractures in highly anisotropic shales. J. Geophys. Res. 2017, 122, 10341–10351. [Google Scholar] [CrossRef]
- Liu, X.; Zeng, W.; Liang, L.; Lei, M. Wellbore stability analysis for horizontal wells in shale formations. J. Nat. Gas Sci. Eng. 2016, 31, 1–8. [Google Scholar] [CrossRef]
- Zhang, Q.; Yao, B.; Fan, X.; Li, Y.; Zhao, P. A modified Hoek-Brown failure criterion for unsaturated intact shale considering the effects of anisotropy and hydration. Eng. Fract. Mech. 2020, 241, 107369. [Google Scholar] [CrossRef]
- Keller, L.M.; Schwiedrzik, J.J.; Gasser, P.; Michler, J. Understanding anisotropic mechanical properties of shales at difffferent length scales: In situ micropillar compression combined with fifinite element calculations. J. Geophys. Res. 2017, 122, 5945–5955. [Google Scholar] [CrossRef]
- Lora, R.V.; Ghazanfari, E.; Izquierdo, E.A. Geomechanical characterization of marcellus shale. Rock Mech. Rock Eng. 2015, 49, 3403–3424. [Google Scholar] [CrossRef] [Green Version]
- Rybacki, E.; Reinicke, A.; Meier, T.; Makasi, M.; Dresen, G. What controls the mechanical properties of shale rocks?—Part I: Strength and young’s modulus. J. Pet. Sci. Eng. 2015, 135, 702–722. [Google Scholar] [CrossRef]
- Wang, M.; Li, P.; Wu, X.; Chen, H. A study on the brittleness and progressive failure process of anisotropic shale. Environ. Earth Sci. 2016, 75, 886. [Google Scholar] [CrossRef]
- Singh, M.; Samadhiya, N.K.; Kumar, A.; Kumar, V.; Singh, B. A nonlinear criterion for triaxial strength of inherently anisotropic rocks. Rock Mech. Rock Eng. 2015, 48, 1387–1405. [Google Scholar] [CrossRef]
- Enriquez-Tenorio, O.; Knorr, A.; Zhu, D.; Hill, A.D. Relationships between mechanical properties and fracturing conductivity for the Eagle Ford Shale. SPE Prod. Oper. 2018, 34, 318–331. [Google Scholar]
- Sun, K.; Zhang, S.; Xin, L. Impacts of bedding directions of shale gas reservoirs on hydraulically induced crack propagation. Nat. Gas Ind. 2016, 3, 139–145. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Ren, L.; Shen, C.; Li, Y. Latest research progresses in network fracturing theories and technologies for shale gas reservoirs. Nat. Gas Ind. B 2018, 5, 533–546. [Google Scholar] [CrossRef]
- Lai, B.; Li, H.; Zhang, J.; Jacobi, D.; Georgi, D. Water-content effects on dynamic elastic properties of organic-rich shale. SPE J. 2016, 21, 635–647. [Google Scholar] [CrossRef]
- Liang, L.; Xiong, J.; Liu, X. Experimental study on crack propagation in shale formations considering hydration and wettability. J. Nat. Gas Sci. Eng. 2015, 23, 492–499. [Google Scholar] [CrossRef]
- Ahmad, H.; Murtaza, M.; Kamal, M.; Hussain, S.; Mahmoud, M. Cationic gemini surfactants containing biphenyl spacer as shale swelling inhibitor. J. Mol. Liq. 2021, 325, 115164. [Google Scholar] [CrossRef]
- Lyu, Q.; Ranjith, P.G.; Long, X.; Ji, B. Experimental investigation of mechanical properties of black shales after CO2-Water-Rock interaction. Materials 2016, 9, 663. [Google Scholar] [CrossRef]
- Minaeian, V.; Dewhurstc, D.N.; Rasouli, V. Deformational behaviour of a clay-rich shale with variable water saturation under true triaxial stress conditions. Geomech. Energy Environ. 2017, 11, 1–13. [Google Scholar] [CrossRef]
- Shi, B.; Xia, B.; Lin, Y.; Xu, J. CT Imaging and Mechanism Analysis of Crack Development by Hydration in Hard-Brittle Shale Formations. Acta Pet. Sin. 2012, 33, 137–142. [Google Scholar]
- Hale, A.H.; Mody, F.K.; Salisbury, D.P. The influence of chemical potential on wellbore stability. SPE Drill. Eng. 1993, 8, 207–216. [Google Scholar] [CrossRef]
- Ma, T.; Chen, P.; Zhang, Q.; Zhao, J. A novel collapse pressure model with mechanical-chemical coupling in shale gas formations with multi-weakness planes. J. Nat. Gas Sci. Eng. 2016, 36, 1151–1177. [Google Scholar] [CrossRef]
- Wen, H.; Chen, M.; Jin, Y.; Kai, W.; Niu, C. A chemo-mechanical coupling model of deviated borehole stability in hard brittle shale. Pet. Explor. Dev. 2014, 41, 817–823. [Google Scholar] [CrossRef]
- Ma, T.; Chen, P. Study of Meso-Damage Characteristics of Shale Hydration Based on CT Scanning Technology. Pet. Explor. Dev. 2014, 41, 249–256. [Google Scholar] [CrossRef]
- Chen, M.; Liang, C.; Lu, Y.; Jin, Y. Wellbore stability model for shale gas reservoir considering the coupling of multi-weakness planes and porous flow. J. Nat. Gas Sci. Eng. 2014, 21, 364–378. [Google Scholar]
- You, J.; Liu, Y.; Li, Y.; Zhou, D.; Gao, H. Influencing factor of Chang 7 oil shale of Triassic Yanchang Formation in Ordos Basin: Constraint from hydrothermal fluid. J. Pet. Sci. Eng. 2021, 201, 108532. [Google Scholar] [CrossRef]
- Deepak, A.M.; Janeček, I. Laboratory Triaxial testing—From historical outlooks to technical aspects. Procedia Eng. 2017, 191, 342–351. [Google Scholar]
- Zhang, Q.; Fan, X.; Chen, P.; Ma, T.; Zeng, F. Geomechanical behaviors of shale after water absorption considering the combined effect of anisotropy and hydration. Eng. Geol. 2020, 269, 105547. [Google Scholar] [CrossRef]
- Ramamurthy, T. Strength and Modulus Responses of Anisotropic Rocks; Pergamon Press: Oxford, UK, 1993. [Google Scholar]
- Chen, Y.; Jiang, C.; Leung, J.Y.; Wojtanowicz, A.K.; Zhang, D. Multiscale characterization of shale pore-fracture system: Geological controls on gas transport and pore size classification in shale reservoirs. J. Pet. Sci. Eng. 2021, 202, 108442. [Google Scholar] [CrossRef]
- Jiang, C.; Liu, X.; Wang, W.; Wei, W.; Duan, M. Three-dimensional visualization of the evolution of pores and fractures in reservoir rocks under triaxial stress. Powder Technol. 2021, 378, 585–592. [Google Scholar] [CrossRef]
- Zhao, P.; Fan, X.; Zhang, Q.; Wang, X.; Zhang, M.; Ran, J.; Lv, D.; Liu, J.; Shuai, J.; Wu, H. The Effect of Hydration on Pores of Shale Oil Reservoirs in the Third Submember of the Triassic Chang 7 Member in Southern Ordos Basin. Energies 2019, 12, 3932. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Jiang, C.; Yin, G.; Zhang, D.; Xing, H.; Wei, A. Permeability evolution under true triaxial stress conditions of Longmaxi shale in the Sichuan Basin, Southwest China. Powder Technol. 2019, 354, 601–614. [Google Scholar] [CrossRef]
- Zhao, P.; Fan, X.; Zhang, Q.; Yao, B.; Zhang, M.; He, L.; Qiang, Y.; Liu, J. Characteristics of Hydration Damage and Its Influence on Permeability of Lamellar Shale Oil Reservoirs in Ordos Basin. Geofluids 2021, 2021, 6646311. [Google Scholar] [CrossRef]
- Ma, T.; Chen, P. A wellbore stability analysis model with chemical-mechanical coupling for shale gas reservoirs. J. Nat. Gas Sci. Eng. 2015, 26, 72–98. [Google Scholar] [CrossRef]
- Liu, B.; Lu, Y.; Meng, Y.; Li, X.; Guo, X.; Ma, Q.; Zhao, W. Petrologic characteristics and genetic model of lacustrine lamellar fine-grained rock and its significance for shale oil exploration: A case study of Permian Lucaogou Formation in Malang sag, Santanghu Basin, NW China. Pet. Explor. Dev. 2015, 42, 656–666. [Google Scholar] [CrossRef]
- Parteli, E.; Da Silva, L.; Andrade, J. Self-organized percolation in multi-layered structures. J. Stat. Mech. Theory Exp. 2010, 3, 03026. [Google Scholar] [CrossRef] [Green Version]
Mineral | Clay | Quartz | Potassium Feldspar | Plagioclase | Calcite | Pyrite |
---|---|---|---|---|---|---|
Range (%) | 9.4~47.2 | 23.9~56.5 | 0~32.4 | 0~18.2 | 0~14.6 | 0~22.6 |
Average value (%) | 28.1 | 33.0 | 11.5 | 9.2 | 5.1 | 12.0 |
No. | Sample Types | Axial Direction and Lamina (Bedding) Angles (°) | Compressive Strength (MPa) | Elastic Modulus (GPa) | ||||
---|---|---|---|---|---|---|---|---|
Dry Samples | 24-h Hydration Samples | 48-h Hydration Samples | Dry | 24-h Hydration Samples | 48-h Hydration Samples | |||
Samples | ||||||||
1 | Bedding shale | 0 | 116.18 | 102.63 | 97.43 | 16.51 | 15.46 | 14.69 |
2 | 30 | 107.33 | 96.56 | 92.95 | 12.55 | 11.44 | 10.73 | |
3 | 60 | 119.45 | 109.21 | 103.54 | 12.12 | 11.19 | 10.03 | |
4 | 90 | 123.54 | 113.71 | 110.21 | 11.83 | 10.76 | 9.88 | |
1 | Lamellar shale | 0 | 83.49 | 76.94 | 73.18 | 12.31 | 10.91 | 9.72 |
2 | 30 | 71.21 | 61.17 | 57.34 | 9.07 | 8.11 | 7.65 | |
3 | 60 | 83.12 | 73.41 | 69.97 | 8.79 | 7.74 | 6.96 | |
4 | 90 | 94.91 | 81.14 | 78.13 | 8.47 | 7.32 | 6.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Wang, L.; Zhao, P.; Fan, X.; Zeng, F.; Yao, B.; He, L.; Yang, S.; Feng, Y. Mechanical Properties of Lamellar Shale Considering the Effect of Rock Structure and Hydration from Macroscopic and Microscopic Points of View. Appl. Sci. 2022, 12, 1026. https://doi.org/10.3390/app12031026
Zhang Q, Wang L, Zhao P, Fan X, Zeng F, Yao B, He L, Yang S, Feng Y. Mechanical Properties of Lamellar Shale Considering the Effect of Rock Structure and Hydration from Macroscopic and Microscopic Points of View. Applied Sciences. 2022; 12(3):1026. https://doi.org/10.3390/app12031026
Chicago/Turabian StyleZhang, Qiangui, Lizhi Wang, Pengfei Zhao, Xiangyu Fan, Feitao Zeng, Bowei Yao, Liang He, Simin Yang, and Yang Feng. 2022. "Mechanical Properties of Lamellar Shale Considering the Effect of Rock Structure and Hydration from Macroscopic and Microscopic Points of View" Applied Sciences 12, no. 3: 1026. https://doi.org/10.3390/app12031026
APA StyleZhang, Q., Wang, L., Zhao, P., Fan, X., Zeng, F., Yao, B., He, L., Yang, S., & Feng, Y. (2022). Mechanical Properties of Lamellar Shale Considering the Effect of Rock Structure and Hydration from Macroscopic and Microscopic Points of View. Applied Sciences, 12(3), 1026. https://doi.org/10.3390/app12031026