A Novel Methodology to Assess Seismic Resilience (SR) of Interconnected Infrastructures
Abstract
1. Background
2. Interdependencies
- Impacts due to the disaster may be reducing by considering the propagation of failures inside the network;
- The reduction of the severe impacts of disaster may be enchanted by considering network dependencies;
3. Seismic Resilience
4. Multidimensional Seismic Resilience
5. Linear Hypothesis
6. Case Study
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| List of symbols | |
| SR | seismic resilience |
| t0E | time of occurrence of the event E |
| RT | repair time (RT) |
| Q | functionality |
| N | number of interdependent infrastructures present in the network |
| ci | parameter that describes the trend of the linear recovery function |
| final value of the functionality | |
References
- Guidotti, R.; Chmielewski, H.; Unnikrishnan, V.; Gardoni, P.; McAllister, T.; van de Lindt, J. Modeling the resilience of critical infrastructure: The role of network dependencies. Sustain. Resil. Infract 2016, 1, 153–168. [Google Scholar] [CrossRef]
- Hallegatte, S.; Rentschler, J.; Rozenberg, J. Lifelines: The Resilient Infrastructure Opportunity (Sustainable Infrastructure); The World Bank: Washington, DC, USA, 2019; Available online: http://hdl.handle.net/10986/31805 (accessed on 21 November 2022).
- Mattsson, L.-G.; Jenelius, E. Vulnerability and resilience of transport systems—A discussion of recent research. Transp. Res. Part A Policy Pract. 2015, 81, 16–34. [Google Scholar] [CrossRef]
- Eun Oh, J.; Espinet Alegre, X.; Pant, R.; Koks, E.E.; Russell, T.; Schoenmakers, R.; Hall, J. Addressing Climate Change in Transport. Volume 2: Pathway to Resilient Transport (Vietnam Transport Knowledge Series); The World Bank: Washington, DC, USA, 2019; Available online: http://documents.worldbank.org/curated/en/438551568123119419/pdf/Volume-2-Pathway-to-Resilient-Transport.pdf (accessed on 21 November 2022).
- Forcellini, D. A new methodology to assess Indirect Losses in Bridges subjected to multiple hazards. Innov. Infrastruct. Solut. 2019, 4, 10. [Google Scholar] [CrossRef]
- Forcellini, D.; Walsh, K.Q. Seismic resilience for recovery investments of bridges methodology. Inst. Civ. Eng. Bridge Eng. 2021. [Google Scholar] [CrossRef]
- Forcellini, D. A resilience-Based Methodology to Assess Soil Structure Interaction on a Benchmark Bridge. Infrastructures 2020, 5, 90. [Google Scholar] [CrossRef]
- Mostafizi, A.; Wang, H.; Cox, D.; Cramer, L.A.; Dong, S. Agent-based tsunami evacuation modeling of unplanned network disruptions for evidence-driven resource allocation and retrofitting strategies. Nat. Hazards 2017, 88, 1347–1372. [Google Scholar] [CrossRef]
- Hilljegerdes, M.; Augustijn-Beckers, E.-W. Evaluating the Effects of Consecutive Hurricane Hits on Evacuation Pattern in Dominica. ISCRAM. 2019. Available online: https://idl.iscram.org/files/martinhilljegerdes/2019/1954_MartinHilljegerdes+Ellen-WienAugustijn-Beckers2019.pdf (accessed on 21 November 2022).
- Colon, C.; Hallegatte, S.; Rozenberg, J. Criticality analysis of a country’s transport network via an agent-based supply chain model. Nat. Sustain. 2021, 4, 209–215. [Google Scholar] [CrossRef]
- Espinet Alegre, X.; Stanton-Geddes, Z.; Aliyev, S.; Bun, V. Analyzing Flooding Impacts on Rural Access to Hospitals and Other Critical Services in Rural Cambodia Using Geo-Spatial Information and Network Analysis; World Bank: Washington, DC, USA, 2020. [Google Scholar]
- Helbing, D. Globally networked risks and how to respond. Nature 2013, 497, 51–59. [Google Scholar] [CrossRef]
- Schweikert, A.E.; L’her, G.L.; Nield, L.G.; Kerber, S.W.; Flanagan, R.R.; Deinert, M.R. Resilience in the Caribbean-Natural Hazards Exposure Assessment and Areas for Future Work: 360° Resilience Background Paper; World Bank: Washington, DC, USA, 2020; Available online: https://openknowledge.worldbank.org/handle/10986/36408 (accessed on 14 December 2022).
- Buldyrev, S.; Parshani, R.; Paul, G.; Stanleyand, H.; Havlin, S. Catastrophic cascade of failures in interdependent networks. Nature 2010, 464, 1025–1028. [Google Scholar] [CrossRef]
- Parandehgheibi, M.; Modiano, E. Robustness of interdependent networks: The case of communications networks and the power grid. In Proceedings of the IEEE Global Communications Conference, Atlanta, GA, USA, 9–13 December 2013; pp. 2164–2169. [Google Scholar]
- Sydney, A.; Scoglio, C.; Youssefand, M.; Schumm, P. Characterizing the robustness of complex networks. Int. J. Internet Technol. Secur. Trans. 2010, 2, 291–330. [Google Scholar] [CrossRef]
- Iyer, S.; Killingback, T.; Sundaramand, B.; Wang, Z. Attack robustness and centrality of complex networks. PLoS ONE 2013, 8, e59613. [Google Scholar] [CrossRef] [PubMed]
- Motter, A.E.; Lai, Y.C. Cascade-based attacks on complex networks. Phys. Rev. E 2002, 66, 065102. [Google Scholar] [CrossRef] [PubMed]
- Schweikert, A.E.; L’Her, G.F.; Deinert, M.R. Simple method for identifying interdependencies in service delivery in critical infrastructure networks. Appl. Netw. Sci. 2021, 6, 44. [Google Scholar] [CrossRef]
- Gomez, S.; Diaz-Guilera, A.; Gomez-Gardenes, J.; Perez-Vicente, C.J.; Moreno, Y.; Arenas, A. Diffusion dynamics on multiplex networks. Phys. Rev. Lett. 2013, 110, 028701. [Google Scholar] [CrossRef]
- De Domenico, M.; Nicosia, V.; Arenas, A.; Latora, V. Structural reducibility of multilayer networks. Nat. Commun. 2015, 6, 6864. [Google Scholar] [CrossRef]
- Parshani, R.; Buldyrev, S.V.; Havlin, S. Interdependent networks: Reducing the coupling strength leads to a change from a first to second order percolation transition. Phys. Rev. Lett. 2010, 105, 048701. [Google Scholar] [CrossRef]
- Cimellaro, G.; Reinhorn, A.M.; Bruneau, M. Framework for analytical quantification of disaster resilience. Eng. Struct. 2010, 32, 3639–3649. [Google Scholar] [CrossRef]
- Forcellini, D. SRRI Methodology to Quantify the Seismic Resilience of Road Infrastructures. Appl. Sci. 2022, 12, 8945. [Google Scholar] [CrossRef]
- Sharma, N.; Gardoni, P. Mathematical modeling of interdependent infrastructure: An object-oriented approach for generalized network-system analysis. Reliab. Eng. Syst. Saf. 2021, 217, 108042. [Google Scholar] [CrossRef]
- Ouyang, M.; Wang, Z. Resilience assessment of interdependent infrastructure systems: With a focus on joint restoration modeling and analysis. Reliab. Eng. Syst. Saf. 2015, 141, 74–82. [Google Scholar] [CrossRef]
- Yang, L.; Wang, P.; Wang, Q.; Bi, S.; Peng, R.; Behrensdorf, J.; Beer, M. Reliability analysis of a complex system with hybrid structures and multi-level dependent life metrics. Reliab. Eng. Syst. Saf. 2021, 209, 107469. [Google Scholar] [CrossRef]
- Karakoc, D.B.; Almoghathawi, Y.; Barker, K.; González, A.D.; Mohebbi, S. Community resilience-driven restoration model for interdependent infrastructure networks. Int. J. Disaster Risk Reduct. 2019, 38, 101228. [Google Scholar] [CrossRef]
- Watcher, R.F.; Forcellini, D.; Warnell, J.M.; Walsh, K.Q. Relationship Amongst Coastal Hazard Countermeasures and Community Resilience in the Tōhoku Region of Japan following the 2011 Tsunami; Natural Hazards Review; ASCE: Reston, VA, USA, 2023; in press. [Google Scholar]
- Xiao, X.; Zhao, X.; Wu, X.; Chen, Z.; Hong, H.; Zhu, L.; Liu, Y. Seismic resilience assessment of urban interdependent lifeline networks. Reliab. Eng. Syst. Saf. 2022, 218, 108164. [Google Scholar] [CrossRef]
- Renschler, C.; Frazier, A.; Arendt, L.; Cimellaro, G.P.; Reinhorn, A.M.; Bruneau, M. Framework for Defining and Measuring Resilience at the Community Scale: The PEOPLES Resilience Framework; Technical report MCEER-10-006; University at Buffalo: Buffalo, NY, USA, 2010. [Google Scholar]
- Bruneau, M.; Chang, S.E.; Eguchi, R.T.; Lee, G.C.; O’Rourke, T.D.; Reinhorn, A.M.; Shinozuka, M.; Tierney, K.; Wallace, W.A.; Winterfeldt, D.V. A framework to quantitatively assess and enhance the seismic resilience of communities. Earthq Spectra 2003, 19, 733–752. [Google Scholar] [CrossRef]
- Ceferino, L.; Reiser, J.M.; Kiremidjian, A.; Deierlein, G.; Bambar’en, C. Effective plans for hospital system response to earthquake emergencies. Nat. Commun. 2020, 11, 4325. [Google Scholar] [CrossRef] [PubMed]
- Deco, A.; Bocchini, P.; Frangopol, D.M. A probabilistic approach for the prediction of seismic resilience of bridges. Earthq. Eng. Struct. Dyn. 2013, 42, 1469–1487. [Google Scholar] [CrossRef]
- Dong, Y.; Frangopol, D.M. Risk and resilience assessment of bridges under mainshock and aftershocks incorporating uncertainties. Eng. Struct. 2015, 83, 198–208. [Google Scholar] [CrossRef]
- Durante, M.G.; Sarno, L.D.; Zimmaro, P.; Stewart, J.P. Damage to roadway infrastructure from 2016 Central Italy earthquake sequence. Earthq. Spectra 2018, 34, 1721–1737. [Google Scholar] [CrossRef]
- Sun, L.; D’Ayala, D.; Favialoup, R.; Gehl, P. Agent-based model on resilience-oriented rapid responses of road networks under seismic hazard. Reliab. Eng. Syst. Saf. 2021, 216, 108030. [Google Scholar] [CrossRef]
- Bi, X.; Wu, J.; Sun, C.; Ji, K. Resilience-Based Repair Strategy for Gas Network System and Water Network System in Urban City. Sustainability 2022, 14, 3344. [Google Scholar] [CrossRef]
- Zhai, C.; Zhao, Y.; Wen, W.; Qin, H.; Xie, L. A novel urban seismic resilience assessment method considering the weighting of post-earthquake loss and recovery time. Int. J. Disaster Risk Reduct. 2023, 84, 103453. [Google Scholar] [CrossRef]
- Elms, D.G. Improving Community Resilience to Natural Events. Civ. Eng. Environ. Syst. 2015, 32, 77–89. [Google Scholar] [CrossRef]
- Forcellini, D. The Role of Climate Change in the Assessment of the Seismic Resilience of Infrastructures. Infrastructures 2021, 6, 76. [Google Scholar] [CrossRef]
- Kafali, C.; Grigoriu, M. Rehabilitation Decision Analysis. In Proceedings of the 9th International Conference on Structural Safety and Reliability (ICOSSAR’05), Rome, Italy, 19–23 June 2005. [Google Scholar]
- Chang, S.E.; Shinozuka, M. Measuring improvements in the disaster resilience of communities. Earthq. Spectra 2004, 20, 739–755. [Google Scholar] [CrossRef]
- Comerio, M.C. Estimating downtime in loss modeling. Earthq. Spectra 2006, 22, 349–365. [Google Scholar] [CrossRef]
- Kang, H.; Burton, H.V.; Miao, H. Replicating the recovery following the 2014 South Napa Earthquake using stochastic processmodels. Earthq. Spectra 2018, 34, 1247–1266. [Google Scholar] [CrossRef]
- Didier, M.; Baumberger, S.; Tobler, R.; Esposito, S.; Ghosh, S.; Stojadinovic, B. Seismic resilience of water distribution and cellular communication systems after the 2015 Gorkha earthquake. J. Struct. Eng. 2018, 144, 104018043. [Google Scholar] [CrossRef]
- Forcellini, D. The Role of Soil Structure Interaction on the Seismic Resilience of Isolated Structures. Appl. Sci. 2022, 12, 9626. [Google Scholar] [CrossRef]
- Sun, L.; Stojadinovic, B.; Sansavini, G. Resilience Evaluation Framework for Integrated Civil Infrastructure-Community Systems under Seismic Hazard. arXiv 2019, arXiv:1901.06465. [Google Scholar] [CrossRef]




| RT1 (CWD) | RT2 (CWD) | C1 | C2 | SR |
|---|---|---|---|---|
| 100 | 400 | 0.01 | 0.0025 | 0.763 |
| 100 | 200 | 0.01 | 0.005 | 0.786 |
| 100 | 150 | 0.01 | 0.0066 | 0.858 |
| 100 | 100 | 0.01 | 0.011 | 0.948 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forcellini, D. A Novel Methodology to Assess Seismic Resilience (SR) of Interconnected Infrastructures. Appl. Sci. 2022, 12, 12975. https://doi.org/10.3390/app122412975
Forcellini D. A Novel Methodology to Assess Seismic Resilience (SR) of Interconnected Infrastructures. Applied Sciences. 2022; 12(24):12975. https://doi.org/10.3390/app122412975
Chicago/Turabian StyleForcellini, Davide. 2022. "A Novel Methodology to Assess Seismic Resilience (SR) of Interconnected Infrastructures" Applied Sciences 12, no. 24: 12975. https://doi.org/10.3390/app122412975
APA StyleForcellini, D. (2022). A Novel Methodology to Assess Seismic Resilience (SR) of Interconnected Infrastructures. Applied Sciences, 12(24), 12975. https://doi.org/10.3390/app122412975
