Effect of Primary Spruce Lamella Aging on the Bending Characteristics of Glulam Beams
Abstract
:1. Introduction
2. Materials and Methods
2.1. Spruce Wood Lamellas
2.2. Aging of Lamellas
2.3. PUR Glue and Gluing of Lamellas
2.4. Bending Characteristics—MOR and MOE
2.5. Shear Strength
2.6. Statistical Analyses
3. Results and Discussion
3.1. Bending Characteristics of Glulam Beams Affected by Aging of Lamellas
3.1.1. Influence of Lamella Aging Methods and Their Locations in Beams
3.1.2. Influence of Temperatures during Lamella Aging
3.2. Shear Strength of Glued Joints Affected by Aging of Lamellas
3.3. MOR and MOE in Bending of Glulam Beams Versus Shear Strength of Glued Joints
4. Conclusions
- The type of natural and artificial aging of spruce lamellas and the location of aged lamellas in three-layer glulam beams affected the MOR more than the MOE.
- The largest negative effect on the MOR of glulam beams was exerted by the primary thermal aging of lamellas at a maximum temperature of 220 °C.
- The smallest MOR was acquired by glulam beams in which the location of aged lamellas was in their surface “pressure and tension” zones, in accordance with bending theory.
- The linear correlation analyses confirmed certain relationships between the MOR of glulam beams and the shear strength (σ) of bonded joints also containing aged lamellas. However, in this experiment, these relationships were significant only in one case, i.e., if glulam beams had a sound lamella in the middle (A-S-A) and the bonded joints consisted of a sound lamella and aged lamella (S-A).
- In general, it can be stated that lamellas from recycled wood sources with damages caused by a higher number of insect galleries or by temperatures above 180 °C or the presence of certain inorganic wood preservatives should not be used for glulam beams designed for load-bearing structures.
- In practice, individual lamellas from aged woods should be selected and then, in the glulam beams, positioned according to their defect type, degree and range to ensure minimal decreases in the MOR and MOE. Before gluing, the lamellas should be dried to a suitable moisture content (usually 6–15%), and the surface of each lamella should be accurately machined to ensure that the thickness of the glue layer will be even throughout and that no dirt, grease and clumps of chemical substances will be present there.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stoeckel, F.; Konnerth, J.; Gindl-Altmutter, W. Mechanical properties of adhesives for bonding wood-a review. Int. J. Adhes. Adhes. 2013, 45, 32–41. [Google Scholar] [CrossRef]
- Mohamad, W.H.W.; Razlan, M.A.; Ahmad, Z. Bending strength properties of glued laminated timber from selected Malaysian hardwood timber. Int. J. Civ. Environ. Eng. 2011, 11, 7–12. [Google Scholar]
- Bourreau, D.; Aimene, Y.; Beauchêne, J.; Thibaut, B. Feasibility of glued laminated timber beams with tropical hardwoods. Eur. J. Wood Wood Prod. 2013, 71, 653–662. [Google Scholar] [CrossRef] [Green Version]
- Liew, K.C.; Tan, Y.F.; Albert, C.M.; Raman, V. Cross-laminated timber and glulam from low-density Paraserianthes falcataria: A look into densification and shear strength. Forests 2022, 13, 1540. [Google Scholar] [CrossRef]
- Lissouck, R.O.; Mvondo, R.R.N.; Ateba, F.R.; Pommier, R. Investigation of green-glued laminated timber from the Congo Basin: Durability, mechanical strength and variability trends of the bondlines. South. For. 2022, 84, 1–17. [Google Scholar] [CrossRef]
- EN 14080; Timber Structures. Glued Laminated Timber and Glue Solid Timber-Requirements. European Committee for Standardization: Brussels, Belgium, 2013.
- Kamke, F.A.; Lee, J.N. Adhesive penetration in wood-a review. Wood Fiber Sci. 2007, 39, 205–220. [Google Scholar]
- Konnerth, J.; Kluge, M.; Schweizer, G.; Miljković, M.; Gindl-Altmutter, W. Survey of selected adhesive bonding properties of nine European softwood and hardwood species. Eur. J. Wood Wood Prod. 2016, 74, 809–819. [Google Scholar] [CrossRef] [Green Version]
- Bockel, S.; Mayer, I.; Konnerth, J.; Niemz, P.; Swaboda, C.; Beyer, M.; Harling, S.; Weiland, G.; Bieri, N.; Pichelin, F. Influence of wood extractives on two-component polyurethane adhesive for structural hardwood bonding. J. Adhes. 2018, 94, 829–845. [Google Scholar] [CrossRef]
- Hänsel, A.; Sandak, J.; Sandak, A.; Mai, J.; Niemz, P. Selected previous findings on the factors influencing the gluing quality of solid wood products in timber construction and possible developments: A review. Wood Mater. Sci. Eng. 2021, 17, 1925963. [Google Scholar] [CrossRef]
- Hu, L.; Qin, L.; Wu, D.; Xu, H.; Yang, Z. Radial variation in bonding performance of preservative-treated wood within Pinus elliottii trees and its relationships with wood density and adhesive penetration. BioResources 2021, 16, 2204–2214. [Google Scholar] [CrossRef]
- Ciglian, D.; Reinprecht, L. The effect of inorganic preservatives in the Norway spruce wood on its wettability and adhesion with PUR glue. Appl. Sci. 2022, 12, 5642. [Google Scholar] [CrossRef]
- Ding, L.; Han, X.; Jiang, S. Impregnation of poplar wood with multifunctional composite modifier and induction of in-situ polymerization by heating. J. Wood Chem. Technol. 2021, 45, 220–228. [Google Scholar] [CrossRef]
- Han, X.; Wu, W.; Wang, J.; Tian, Z.; Jiang, S. Hydrogen-Bonding-Aided Fabrication of Wood Derived Cellulose Scaffold/Aramid Nanofiber into High-Performance Bulk Material. Materials 2021, 14, 5444. [Google Scholar] [CrossRef] [PubMed]
- Iždinský, J.; Vidholdová, Z.; Reinprecht, L. Particleboards from recycled wood. Forests 2020, 11, 1166. [Google Scholar] [CrossRef]
- Iždinský, J.; Reinprecht, L.; Vidholdová, Z. Particleboards from recycled pallets. Forests 2021, 12, 1597. [Google Scholar] [CrossRef]
- Goverse, T.; Hekkert, M.P.; Groenewegen, P.; Worrell, E.; Smits, R.E. Wood innovation in the residential construction sector; opportunities and constraints. Resour. Conserv. Recycl. 2001, 34, 53–74. [Google Scholar] [CrossRef]
- Besserer, A.; Troilo, S.; Girods, P.; Rogaume, Y.; Brosse, N. Cascading recycling of wood waste: A review. Polymers 2021, 13, 1752. [Google Scholar] [CrossRef]
- Fraanje, P.J. Cascading of pine wood. Resour. Conserv. Recycl. 1997, 19, 21–28. [Google Scholar] [CrossRef]
- Höglmeier, K.; Weber-Blaschke, G.; Richter, K. Utilization of recovered wood in cascades versus utilization of primary wood-a comparison with life cycle assessment using system expansion. Int. J. Life Cycle Assess. 2014, 19, 1755–1766. [Google Scholar] [CrossRef]
- Höglmeier, K.; Steubing, B.; Weber-Blaschke, G.; Richter, K. LCA-based optimization of wood utilization under special consideration of a cascading use of wood. J. Environ. Manag. 2015, 152, 158–170. [Google Scholar] [CrossRef]
- Lubke, H.; Ihnát, V.; Kuňa, V.; Balberčák, J. A multi-stage cascade use of wood composite boards. Wood Res. 2020, 65, 843–854. [Google Scholar] [CrossRef]
- Yang, T.H.; Lin, C.J.; Wang, S.Y.; Tsai, M.J. Characteristics of particleboard made from recycled wood-waste chips impregnated with phenol formaldehyde resin. Build. Environ. 2007, 42, 189–195. [Google Scholar] [CrossRef]
- Wang, L.; Chen, S.S.; Tsang, D.C.; Poon, C.S.; Shih, K. Value-added recycling of construction waste wood into noise and thermal insulating cement-bonded particleboards. Constr. Build. Mater. 2016, 125, 316–325. [Google Scholar] [CrossRef]
- Akinyemi, B.A.; Okonkwo, C.E.; Alhassan, E.A.; Ajiboye, M. Durability and strength properties of particle boards from polystyrene-wood wastes. J. Mater. Cycles Waste Manag. 2019, 21, 1541–1549. [Google Scholar] [CrossRef]
- Arbelaez, R.; Schimleck, L.; Sinha, A. Salvaged lumber for structural mass timber panels: Manufacturing and testing. Wood Fiber Sci. 2020, 52, 178–190. [Google Scholar] [CrossRef]
- Llana, D.F.; González-Alegre, V.; Portela, M.; Íñiguez-González, G. Cross laminated timber (CLT) manufactured with European oak recovered from demolition: Structural properties and non-destructive evaluation. Constr. Build. Mater. 2022, 339, 127635. [Google Scholar] [CrossRef]
- Serrano, E. Mechanical performance and modelling of glulam. In Timber Engineering; Thelandersson, S., Larsen, H.J., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2003; pp. 67–80. [Google Scholar]
- Kotwica, E.; Krzosek, S. Glulam, LVL and X-lam-engineering wood products in the buildings of the future. Ann. Wars. Univ. Life Sci. -SGGW For. Wood Technol. 2018, 104, 256–260. [Google Scholar]
- Ritter, M.A.; Williamson, T.G. State of the art report-Glulam timber bridge design in the US. In Proceedings of the International Council for Building Research Studies and Documentation. Working Commission W18-Timber Structures, Sydney, Australia, 7–8 July 1994; CIB-W18/27-l. Timber Scientific Publishing: Karlsruhe, Germany, 1995. [Google Scholar]
- Malo, K.A.; Angst, A. Lepené lamelové drevo. (Glued laminated wood.). In Handbook 1-Dřevěné konstrukce. Leonardo da Vinci Pilot Project-Educational Materials for Designing and Testing of Timber Structures CZ/06/B/F/PP/168007; Chapter 5; TU Graz: Graz, Austria, 2008; pp. 46–59. [Google Scholar]
- Ong, C.B. Glue-laminated timber (Glulam). In Wood Composites; Elsevier, Ltd.: Amsterdam, The Netherlands, 2015; pp. 123–140. [Google Scholar]
- Thelandersson, S.; Larsen, H.J. Timber Engineering; John Wiley & Sons, Ltd.: Chichester, UK, 2003; 429p. [Google Scholar]
- Risse, M.; Weber-Blaschke, G.; Richter, K. Eco-efficiency analysis of recycling recovered solid wood from construction into laminated timber products. Sci. Total Environ. 2019, 661, 107–119. [Google Scholar] [CrossRef]
- Syrovátko, J. Pružnostní a Pevnostní Charakteristiky Lepeného Nosníku Využívajícího Recyklovaného Dřeva (Elasticity and Strength Characteristics of Glued Beams Using Wood Recyclates); Mendelova univerzita v Brně, Lesnická a dřevařská fakulta: Brno, Czech Republic, 2019; 63p. [Google Scholar]
- Mali, A.B. Using Salvaged Lumber as a Feedstock for Manufacturing Structural Glulam. Doctor’s dissertation, Michigan State University, East Lansing, MI, USA, 2022; 166p. [Google Scholar]
- Cavalli, A.; Cibecchini, D.; Togni, M.; Sousa, H.S. A review on the mechanical properties of aged wood and salvaged timber. Constr. Build. Mater. 2016, 114, 681–687. [Google Scholar] [CrossRef] [Green Version]
- Kránitz, K.; Sonderegger, W.; Bues, C.T.; Niemz, P. Effects of aging on wood: A literature review. Wood Science and Technology 2016, 50, 7–22. [Google Scholar] [CrossRef]
- Unger, A.; Schniewind, A.P.; Unger, W. Conservation of Wood Artifacts. Springer-Verlag: Berlin, Germany, 2001; 578p. [Google Scholar]
- Reinprecht, L. Strength of Deteriorated Wood in Relation to its Structure; Monography-VPA 2/1992; Technical University of Zvolen: Zvolen, Slovakia, 1992; 76p, ISBN 80-228-0195-X. [Google Scholar]
- Wilcox, W.W. Detection of early stages of wood decay with ultrasonic pulse velocity. For. Prod. J. 1988, 38, 68–73. [Google Scholar]
- Reinprecht, L.; Pánek, M. Ultrasonic technique for evaluation of biodefects in wood: Part 2-In-situ and in-vitro analyses of old beams using ultrasonic and bending tests. Int. Wood Prod. J. 2013, 4, 22–29. [Google Scholar] [CrossRef]
- Hill, C.A. Wood Modification: Chemical, Thermal and Other Processes. John Wiley & Sons., Ltd.: Chichester, UK,, 2006; 260p. [Google Scholar]
- Reinprecht, L.; Repák, M. The impact of paraffin-thermal modification of beech wood on its biological, physical and mechanical properties. Forests 2019, 10, 1102. [Google Scholar] [CrossRef] [Green Version]
- Baar, J.; Brabec, M.; Slávik, R.; Čermák, P. Effect of hemp oil impregnation and thermal modification on European beech wood properties. Eur. J. Wood Wood Prod. 2020, 79, 161–175. [Google Scholar] [CrossRef]
- Bastani, A.; Adamopoulos, S.; Militz, H. Effect of open assembly time and equilibrium moisture content on the penetration of polyurethane adhesive into thermally modified wood. J. Adhes. 2016, 93, 575–583. [Google Scholar] [CrossRef]
- Cai, C.; Antikainen, J.; Luostarinen, K.; Mononen, K.; Heräjärvi, H. Wetting-induced changes on the surface of thermally modified Scots pine and Norway spruce wood. Wood Sci. Technol. 2018, 52, 1181–1193. [Google Scholar] [CrossRef]
- Pulngern, T.; Udtaranakron, T.; Chanto, K. Physical and mechanical behaviours of thermally modified rubberwood glulam beam under sustained and cyclic loading. Wood Fiber Sci. 2020, 52, 298–312. [Google Scholar] [CrossRef]
- Felton, C.C.; De Groot, R.C. The recycling potential of preservative-treated wood. For. Prod. J. 1996, 46, 37–46. [Google Scholar]
- Piao, C.; Monlezun, C.J.; Shupe, T.F. Glueline bonding performance of decommissioned CCA-treated wood. Part I: Without retreatment. For. Prod. J. 2009, 59, 36–42. [Google Scholar]
- Deroubaix, G. Waste Plan of the Strategic Committee of the Wood Sector; Stakes, Observations and Orientations: Le Havre, France, 2017. [Google Scholar]
- EN 408; Timber Structures. Structural Timber and Glued Laminated Timber. Determination of Some Physical and Mechanical properties. European Committee for Standardization: Brussels, Belgium,, 2012; (2010+A1:2012).
- EN 310; Wood-based Panels. Determination of Modulus of Elasticity in Bending and of Bending Strength. European Committee for Standardization: Brussels, Belgium, 1993.
- EN 205; Adhesives. Wood Adhesives for Non-Structural Applications. Determination of Tensile Shear Strength of Lap Joints. European Committee for Standardization: Brussels, Belgium, 2016.
- Vidholdová, Z.; Ciglian, D.; Reinprecht, L. Bonding of the thermally modified Norway spruce wood with the PUR and PVAc adhesives. Acta Fac. Xylologiae Zvolen 2021, 63, 63–73. [Google Scholar]
- Bekhta, P.; Niemz, P. Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung 2003, 57, 539–546. [Google Scholar] [CrossRef]
- Boonstra, M.; van Acker, J.; Tjeerdsma, B.; Kegel, E. Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Ann. For. Sci. 2007, 64, 679–690. [Google Scholar] [CrossRef] [Green Version]
- Bytner, O.; Drożdżek, M.; Laskowska, A.; Zawadzki, J. Influence of thermal modification in nitrogen atmosphere on the selected mechanical properties of Black poplar wood (Populus nigra L.). Materials 2022, 15, 7949. [Google Scholar] [CrossRef] [PubMed]
- Özçifçi, A. Impacts of impregnation with boron compounds on the bonding strength of wood materials. Constr. Build. Mater. 2008, 22, 541–545. [Google Scholar] [CrossRef]
- Reinprecht, L.; Tiňo, R.; Šomšák, M. The impact of fungicides, plasma, UV-additives and weathering on the adhesion strength of acrylic and alkyd coatings to the Norway spruce wood. Coatings 2020, 10, 1111. [Google Scholar] [CrossRef]
- Keskin, H.; Mutlu, E. The bending strength properties of some wood types impregnated with fire retardant chemicals. In Proceedings of the 4th International Symposium on Innovative Technologies in Engineering and Science (ISITES2016), Alanya/Antalya, Turkey, 3–5 November 2016; pp. 1074–1083. [Google Scholar]
- Taghiyari, H.R.; Esmailpour, A.; Adamopoulos, S.; Zereshki, K.; Hosseinpourpia, R. Shear strength of heat-treated solid wood bonded with polyvinyl-acetate reinforced by nanowollastonite. Wood Res. 2020, 65, 183–194. [Google Scholar] [CrossRef]
- Andromachi, M.; Ekaterini, R. Adhesive bond performance of heat-treated fir wood (Abies Borrissiregis). Wood Res. 2018, 63, 909–916. [Google Scholar]
- Atar, M.; Keskin, H.; Yavuzcan, H.G. Impacts of impregnation with boron compounds on the bonding strength of some wood materials. In Bonding of Modified Wood, Proceedings of the 5th COST E34 International Workshop, Bled, Slovenia, 6 September 2007; Biotechnical Faculty, University of Ljubljana: Ljubljana, Slovenia, 2007; pp. 61–69. [Google Scholar]
- Özcifci, A.; Okçu, O. The influence of the impregnating chemicals on the bonding strength of impregnated wood materials. J. Appl. Polym. Sci. 2008, 107, 2871–2876. [Google Scholar] [CrossRef]
- Lai, Y.Z. Chemical degradation. In Wood and Cellulosic Chemistry; Dekker: New York, NY, USA, 2000; pp. 443–512. [Google Scholar]
- Lorenz, L.F.; Frihart, C. Adhesive bonding of wood treated with ACQ and copper azole preservatives. For. Prod. J. 2006, 56, 90–93. [Google Scholar]
- Ozdemir, T.; Temiz, A.; Aydin, I. Effect of wood preservatives on surface properties of coated wood. Adv. Mater. Sci. Eng. 2015, 631835. [Google Scholar] [CrossRef] [Green Version]
- Alade, A.A.; Naghizadeh, Z.; Wessels, C.B.; Tyhoda, L. A review of the effects of wood preservative impregnation on adhesive bonding and joint performance. J. Adhes. Sci. Technol. 2021, 36, 1–25. [Google Scholar] [CrossRef]
- Mamoňová, M.; Ciglian, D.; Reinprecht, L. SEM analysis of glued joints of thermally modified wood bonded with PUR and PVAc glues. Materials 2022, 15, 6440. [Google Scholar] [CrossRef] [PubMed]
- Lehringer, C.H.; Richter, K.; Schwarze, F.W.M.R.; Militz, H. A review on promising approaches for liquid permeability improvement in softwoods. Wood Fiber Sci. 2009, 41, 373–385. [Google Scholar]
Glulam Beam | MOR (MPa) | MOE (MPa) |
---|---|---|
1st group (S-S-S) | ||
Sound | 81.63 (2.66) | 10,432 (742) |
2nd group (S-A-S) | ||
GD bio-attack | 72.78 (5.38) b | 10,864 (693) d |
LD bio-attack | 74.45 (0.82) c | 9956 (1298) d |
T-160 °C | 81.74 (1.63) d | 9566 (332) d |
T-180 °C | 82.65 (1.93) d | 11,574 (391) d |
T-200 °C | 77.53 (2.65) d | 9540 (1360) d |
T-220 °C | 68.29 (4.75) a | 10,564 (1470) d |
CuSO4·5H2O | 75.29 (5.69) c | 9701 (598) d |
ZnCl2 | 70.78 (5.60) a | 9806 (674) d |
H3BO3 | 80.03 (3.05) d | 10,905 (1055) d |
(NH4)2SO4 | 73.08 (7.18) b | 8856 (384) b |
3rd group (A-S-A) | ||
GD bio-attack | 60.98 (3.21) a | 8292 (913) a |
LD bio-attack | 67.37 (3.74) a | 9614 (426) d |
T-160 °C | 80.85 (3.50) d | 9145 (1456) c |
T-180 °C | 79.88 (6.54) d | 11,554 (499) d |
T-200 °C | 70.38 (6.50) a | 10,443 (484) d |
T-220 °C | 62.60 (4.63) a | 9518 (731) d |
CuSO4·5H2O | 71.09 (4.58) a | 10,591 (704) d |
ZnCl2 | 68.92 (1.36) a | 9151 (414) c |
H3BO3 | 71.20 (1.63) a | 8415 (517) a |
(NH4)2SO4 | 70.82 (5.38) a | 9052 (269) c |
4th group (A-A-A) | ||
GD bio-attack | 60.02 (9.86) a | 7540 (1032) a |
LD bio-attack | 74.99 (7.18) c | 9738 (670) d |
T-160 °C | 80.97 (7.51) d | 9841 (860) d |
T-180 °C | 76.03 (6.19) d | 9826 (1436) d |
T-200 °C | 69.29 (7.38) a | 10,155 (543) d |
T-220 °C | 62.56 (2.17) a | 8508 (811) a |
CuSO4·5H2O | 69.20 (4.20) a | 9686 (396) d |
ZnCl2 | 70.32 (3.55) a | 10,542 (1689) d |
H3BO3 | 75.45 (2.54) a | 10,825 (920) d |
(NH4)2SO4 | 69.87 (1.54) a | 9012 (1399) c |
Double-Bonded Set | Shear Strength—σ (MPa) |
---|---|
1st set (S-S) | |
Sound | 10.82 (1.39) |
2nd set (S-A) | |
GD bio-attack | 10.85 (1.24) d |
LD bio-attack | 11.02 (0.86) d |
3rd set (A-A) | |
GD bio-attack | 9.90 (1.30) d |
LD bio-attack | 10.94 (1.49) d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reinprecht, L.; Ciglian, D.; Iždinský, J.; Sedliačik, J. Effect of Primary Spruce Lamella Aging on the Bending Characteristics of Glulam Beams. Appl. Sci. 2022, 12, 12872. https://doi.org/10.3390/app122412872
Reinprecht L, Ciglian D, Iždinský J, Sedliačik J. Effect of Primary Spruce Lamella Aging on the Bending Characteristics of Glulam Beams. Applied Sciences. 2022; 12(24):12872. https://doi.org/10.3390/app122412872
Chicago/Turabian StyleReinprecht, Ladislav, Dávid Ciglian, Ján Iždinský, and Ján Sedliačik. 2022. "Effect of Primary Spruce Lamella Aging on the Bending Characteristics of Glulam Beams" Applied Sciences 12, no. 24: 12872. https://doi.org/10.3390/app122412872