A Localized Bloom Filter-Based CP-ABE in Smart Healthcare
Abstract
:1. Introduction
2. Proposed Method
2.1. Architecture Components
- Authorization center;
- Cloud service provider;
- Healthcare center;
- Patients;
- Emergency contact member;
- Users.
2.2. Security Model
2.3. MCP-ABE Workflow
Dual-Access Scheme
2.4. Proposed Method Process
2.4.1. Setup
2.4.2. Secret Key Generation
2.4.3. Encryption
Algorithm 1: Encryption |
Input: Master key MK, Electronic health record (EHR), (MG, ρ), Access matrix MG = l * n Output: Ciphered EHR (C-EHR) Begin Initialize encryption secret For i = 1: l End End |
Algorithm 2: Selected Attributes Using BF |
Input: MG, ρ—selected attributes. Output: BFO Begin Selected attributes Ae from (MG, ρ) BFO create for ‘n’ attributes For I = 1: n BFO[i] = 0; For each e in Ae R = 1; S = x; For i = 1: K (hash function) K1 = Hi + 1 (Ae) If BFO[K1] == 0 If R == −1 J = P Else Random strings rJ,e produced ABF [J] == rJ,e S = S ABF [J] End Else S = S ABF [J] End ABF [S] = S End End For I = 1: n If BFO [i] == 0 BFO [i] = random number End End End |
2.4.4. Decryption
Algorithm 3: Attribute Extraction Using BF Reconstruction |
Input: S—user-selected attributes. BFO—bloom filter output. PK—public key Output: Mapped attributes ρ’ Begin For each selected attribute at in S For i = 1: k J = Hi + 1 (at) RS = RS ABF [J] Ae = RS[LSB] remove lead zeros in Ae if Ae = at rn =RS[MSB] remove lead zeros in rn End ρ’= [urn, Ae] end end |
Algorithm 4: Decryption |
Input: Secret key SK, C-EHR, MG, ρ’, K- hash functions Output: EHR Begin If ρ’ is satisfied Else EHR = null value End End |
2.4.5. Break-Glass Key Generation
Algorithm 5: Break-Glass Key Generation |
Input: shared password PW, linear gain matrix ZP, and generator matrix G. Output: BGK, BGK1 and BGK2 Begin Initialize Random value R1, R2 Select Break glass Key K and CSP key K1 Select theta 1 from ZP Select theta 2 from ZP Calculate K2 for HC using following equation Calculate key factors for CSP and HC using following equation Calculate BGK for CSP and HC using following equations End |
2.4.6. Break-Glass Key Extraction
Algorithm 6: Break-Glass Key Extraction |
Input, , and other parameters used from CSP and HC Output: BGK Begin Select s from ZP Calculate R using Calculate r1 and r2 From r1 and r2 calculate bgk1 and bgk2 in CSP in HC Final BGK is as follows End |
2.5. Security Analysis
3. Results and Discussion
- Communication overhead;
- Computational overhead.
3.1. Computational Overhead
3.1.1. Key Generation
3.1.2. Encryption
3.1.3. Decryption
3.1.4. Break-Glass Approach
3.2. Communication Overhead
3.2.1. Public Key
3.2.2. Private Key
3.2.3. Cipher Text
3.2.4. Break-Glass Approach
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sicari, S.; Rizzardi, A.; Grieco, L.A.; Coen-Porisini, A. Security, privacy and trust in Internet of Things: The road ahead. Comput. Netw. 2015, 76, 146–164. [Google Scholar] [CrossRef]
- Singh, J.; Pasquier, T.; Bacon, J.; Ko, H.; Eyers, D. Twenty security considerations for cloud-supported Internet of Things. IEEE Internet Things J. 2015, 3, 269–284. [Google Scholar] [CrossRef] [Green Version]
- Gope, P.; Hwang, T. BSN-Care: A secure IoT-based modern healthcare system using body sensor network. IEEE Sens. J. 2015, 16, 1368–1376. [Google Scholar] [CrossRef]
- Moosavi, S.R.; Gia, T.N.; Nigussie, E.; Rahmani, A.M.; Virtanen, S.; Tenhunen, H.; Isoaho, J. End-to-end security scheme for mobility enabled healthcare Internet of Things. Future Gener. Comput. Syst. 2016, 64, 108–124. [Google Scholar] [CrossRef]
- Asplund, M.; Nadjm-Tehrani, S. Attitudes and perceptions of IoT security in critical societal services. IEEE Access 2016, 4, 2130–2138. [Google Scholar] [CrossRef]
- Hossain, M.S.; Muhammad, G.; Rahman, S.M.M.; Abdul, W.; Alelaiwi, A. Toward end-to-end biomet rics-based security for IoT infrastructure. IEEE Wirel. Commun. 2016, 23, 44–51. [Google Scholar] [CrossRef]
- Han, K.H.; Bae, W.S. Proposing and verifying a security-enhanced protocol for IoT-based communication for medical devices. Clust. Comput. 2016, 19, 2335–2341. [Google Scholar] [CrossRef]
- Baker, S.B.; Xiang, W.; Atkinson, I. Internet of things for smart healthcare: Technologies, challenges, and opportunities. IEEE Access 2017, 5, 26521–26544. [Google Scholar] [CrossRef]
- Mathur, A.; Newe, T.; Elgenaidi, W.; Rao, M.; Dooly, G. A secure end-to-end IoT solution. Sens. Actuators A Phys. 2017, 263, 291–299. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, Z.; Ning, H.; Ullah, A.; Yao, X. Secure authentication and prescription safety protocol for telecare health services using ubiquitous IoT. Appl. Sci. 2017, 7, 1069. [Google Scholar] [CrossRef]
- Alkeem, E.A.; Shehada, D.; Yeun, C.Y.; Zemerly, M.J.; Hu, J. New secure healthcare system using cloud of things. Clust. Comput. 2018, 20, 2211–2229. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, J.; Tian, C.; Zhao, P.; Xu, G.; Lin, J. Cloud storage for electronic health records based on secret sharing with verifiable reconstruction outsourcing. IEEE Access 2018, 6, 40713–40722. [Google Scholar] [CrossRef]
- Srinivas, J.; Das, A.K.; Kumar, N.; Rodrigues, J.J. Cloud centric authentication for wearable healthcare monitoring system. IEEE Trans. Dependable Secur. Comput. 2018, 17, 942–956. [Google Scholar] [CrossRef]
- Yang, Y.; Zheng, X.; Guo, W.; Liu, X.; Chang, V. Privacy-preserving fusion of IoT and big data for e-health. Future Gener. Comput. Syst. 2018, 86, 1437–1455. [Google Scholar] [CrossRef] [Green Version]
- Anaya, L.H.S.; Alsadoon, A.; Costadopoulos, N.; Prasad, P.W.C. Ethical implications of user perceptions of wearable devices. Sci. Eng. Ethics 2018, 24, 1–28. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Priya Remamany, K.; Maheswari, K.; Ramesh Babu Durai, C.; Anushkannan, N.K.; Victoria, D.R.S.; Ben Othman, M.T.; Hamdi, M.; Hamam, H. A Localized Bloom Filter-Based CP-ABE in Smart Healthcare. Appl. Sci. 2022, 12, 12720. https://doi.org/10.3390/app122412720
Priya Remamany K, Maheswari K, Ramesh Babu Durai C, Anushkannan NK, Victoria DRS, Ben Othman MT, Hamdi M, Hamam H. A Localized Bloom Filter-Based CP-ABE in Smart Healthcare. Applied Sciences. 2022; 12(24):12720. https://doi.org/10.3390/app122412720
Chicago/Turabian StylePriya Remamany, Krishna, K. Maheswari, C Ramesh Babu Durai, N. K. Anushkannan, D. Rosy Salomi Victoria, Mohamed Tahar Ben Othman, Monia Hamdi, and Habib Hamam. 2022. "A Localized Bloom Filter-Based CP-ABE in Smart Healthcare" Applied Sciences 12, no. 24: 12720. https://doi.org/10.3390/app122412720
APA StylePriya Remamany, K., Maheswari, K., Ramesh Babu Durai, C., Anushkannan, N. K., Victoria, D. R. S., Ben Othman, M. T., Hamdi, M., & Hamam, H. (2022). A Localized Bloom Filter-Based CP-ABE in Smart Healthcare. Applied Sciences, 12(24), 12720. https://doi.org/10.3390/app122412720