An Evaluation of Surface-Active Agent Hexadecyltrimethylammonium Bromide with Vertical Self-Alignment Properties to Align Liquid Crystals for Various Cell Gap Conditions
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Basic Mechanism of RF Devices Using LCs and Consideration of the Cell Gap
2.2. Materials and Cell Fabrication
2.3. Experimental Setup
3. Results
3.1. Analysis of Insufficient HTAB Concentration
3.2. Analysis of Limitations of 5CB and HTAB for Homeotropic Alignment
3.3. Effect of HTAB Concentration on the Phase-Change Characteristics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Scheffer, J.; Nehring, J. A new, highly multiplexable liquid crystal display. Appl. Phys. Lett. 1984, 45, 1021. [Google Scholar] [CrossRef]
- Koide, N. Liquid Crystal Display Story; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Ishii, Y.J. The world of liquid-crystal display TVs—Past, present, and future. Disp. Technol. 2007, 3, 351–360. [Google Scholar] [CrossRef]
- Wang, D.; Nam, S.; Choi, S.S. Analytical design of optical color filter using bi-layered chiral liquid crystal. Opt. Mater. Express 2022, 12, 949–962. [Google Scholar] [CrossRef]
- Sato, S. Liquid-crystal lens-cells with variable focal length. Jpn. J. Appl. Phys. 1979, 18, 1679. [Google Scholar] [CrossRef]
- Wang, B.; Ye, M.; Honma, M.; Nose, T.; Sato, S. Liquid Crystal Lens with Spherical Electrode. Jpn. J. Appl. Phys. 2002, 41, L1232. [Google Scholar] [CrossRef]
- Ren, H.; Fox, D.W.; Wu, B.; Wu, S.T. Liquid crystal lens with large focal length tunability and low operating voltage. Opt. Express 2007, 15, 11328–11335. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.W.; Kim, S.H.; Yoon, T.H. Self-shading by optical or thermal control of transmittance with liquid crystals doped with push-pull azobenzene. Sol. Energy Mater. Sol. Cells 2018, 183, 146–150. [Google Scholar] [CrossRef]
- Oh, S.W.; Kim, S.H.; Yoon, T.H. Control of transmittance by thermally induced phase transition in guest–host liquid crystals. Adv. Sustain. Syst. 2018, 2, 1800066. [Google Scholar] [CrossRef]
- Oh, S.W.; Kim, S.H.; Baek, J.M.; Yoon, T.H. Optical and thermal switching of liquid crystals for self-shading windows. Adv. Sustain. Syst. 2018, 2, 1700164. [Google Scholar] [CrossRef]
- Han, C.H.; Eo, H.; Choi, T.H.; Kim, W.S.; Oh, S.W. A simulation of diffractive liquid crystal smart window for privacy application. Sci. Rep. 2022, 12, 11384. [Google Scholar] [CrossRef]
- Oh, S.W.; Nam, S.M.; Kim, S.H.; Yoon, T.H.; Kim, W.S. Self-regulation of infrared using a liquid crystal mixture doped with push–pull azobenzene for energy-saving smart windows. ACS Appl. Mater. Interfaces 2021, 13, 5028–5033. [Google Scholar] [CrossRef] [PubMed]
- Sadiku, M.N. Elements of Electromagnetics; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Ferrari, P.; Jakoby, R.; Karabey, O.H.; Rehder, G.P.; Maune, H. Reconfigurable Circuits and Technologies for Smart Millimeter-Wave Systems; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Karabey, O.H. Electronic Beam Steering and Polarization Agile Planar Antennas in Liquid Crystal Technology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Ting, T.L. Technology of liquid crystal based antenna. Opt. Express 2019, 27, 17138. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.S.; Choi, J.Y.; Shin, H.J.; Kim, W.S. Comparative Analysis of Liquid-Crystal Driving between the Grounded-Coplanar Waveguide and the Floating-Electrode-Free Coplanar Waveguide in Liquid-Crystal Phase Shifters. In Proceedings of the 2022 IEEE USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), Denver, CO, USA, 10–15 July 2022; p. 118. [Google Scholar]
- Utsumi, Y.; Bach, N.T.; Kamei, T.; Ozaki, R.; Moritake, H. Comparison of microwave measurements and theoretical calculations of dielectric birefringence for a liquid crystal loaded CPW-FE phase shifter. Mol. Cryst. Liq. Cryst. 2009, 510, 197–213. [Google Scholar] [CrossRef]
- Li, J. All-optically Controlled Microwave Analog Phase Shifter with Insertion Losses Balancing. Eng. Lett. 2020, 28, 663–667. [Google Scholar]
- Li, J. Optically Steerable Phased Array Enabling Technology Based on Mesogenic Azobenzene Liquid Crystals for Starlink Towards 6G. In Proceedings of the 2020 IEEE Asia-Pacific Microwave Conference (APMC), Hong Kong, China, 10–13 November 2020; p. 345. [Google Scholar]
- Uchida, T.; Ishikawa, K.; Wada, M. Liquid crystal alignments and surface energy. Mol. Cryst. Liq. Cryst. 1980, 60, 37–52. [Google Scholar] [CrossRef]
- Kang, D.; Rosenblatt, C. Surface-anisotropy-induced linear electro-optic effect in a nematic liquid crystal. Phys. Rev. E 1996, 53, 2976–2979. [Google Scholar] [CrossRef]
- Kim, K.H.; Park, B.W.; Choi, S.W.; Lee, J.H.; Kim, H.; Shin, K.C.; Yoon, T.H. Vertical alignment of liquid crystals without alignment layers. Liq. Cryst. 2013, 40, 391–395. [Google Scholar] [CrossRef]
- Oh, S.W.; Kim, S.H.; Yoon, T.H. Thermal control of transmission property by phase transition in cholesteric liquid crystals. J. Mater. Chem. C 2018, 6, 6520–6525. [Google Scholar] [CrossRef]
- Ma, J.S.; Choi, J.Y.; Oh, S.W.; Kim, W.S. Liquid-crystal-based floating-electrode-free coplanar waveguide phase shifter with an additional liquid-crystal layer for 28-GHz applications. J. Phys. D Appl. Phys. 2021, 55, 095106. [Google Scholar] [CrossRef]
- Li, J. Structure and Optimisation of Liquid Crystal based Phase Shifter for Millimetre-wave Applications. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2019. [Google Scholar] [CrossRef]
- Li, J.; Chu, D. Liquid Crystal-Based Enclosed Coplanar Waveguide Phase Shifter for 54–66 GHz Applications. Crystals 2019, 9, 650. [Google Scholar] [CrossRef] [Green Version]
- Kuki, T.; Fujikake, H.; Nomoto, T. Microwave variable delay line using dual-frequency switching-mode liquid crystal. IEEE Trans. Microw. Theory Tech. 2002, 50, 2604. [Google Scholar] [CrossRef]
- Ito, R.; Kawakami, T.; Ito, Y.; Sasamori, T.; Isota, Y.; Honma, M.; Nose, T. Fundamental properties of novel design microstrip line type of liquid crystal phase shifter in microwave region. Jpn. J. Appl. Phys. 2012, 51, 044104. [Google Scholar] [CrossRef]
- Goelden, F.; Gaebler, A.; Goebel, M.; Manabe, A.; Mueller, S.; Jakoby, R. Tunable liquid crystal phase shifter for microwave frequencies. Electron. Lett. 2009, 45, 686–687. [Google Scholar] [CrossRef]
- Fritzsch, C.; Giacomozzi, F.; Karabey, O.H.; Bildik, S.; Colpo, S.; Jakoby, R. Advanced characterization of a W-band phase shifter based on liquid crystals and MEMS technology. Int. J. Microw. Wirel. Technol. 2012, 4, 379–386. [Google Scholar] [CrossRef]
- Kuki, T.; Fujikake, H.; Nomoto, T.; Utsumi, Y. Design of a microwave variable delay line using liquid crystal, and a study of its insertion loss. Electron. Commun. Jpn. 2002, 85, 36–42. [Google Scholar] [CrossRef]
- Park, S.B.; Song, J.K.; Um, Y.; Kim, K.H. Pixel-division technology for high-quality vertical-alignment LCDs. IEEE Electron. Device Lett. 2010, 31, 987–989. [Google Scholar] [CrossRef]
- Dubois, F.; Krasinski, F.; Splingart, B.; Tentillier, N.; Legrand, C.; Spadlo, A.; Dabrowski, R. Large microwave birefringence liquid-crystal characterization for phase-shifter applications. Jpn. J. Appl. Phys. 2008, 47, 3564. [Google Scholar] [CrossRef]
- Tsai, T.R.; Chen, C.Y.; Pan, R.P.; Pan, C.L.; Zhang, X.C. Electrically controlled room temperature terahertz phase shifter with liquid crystal. IEEE Microw. Wirel. Compon. Lett. 2004, 14, 77–79. [Google Scholar] [CrossRef]
- Yoon, W.J.; Choi, Y.J.; Kim, D.Y.; Kim, J.S.; Yu, Y.T.; Lee, H.; Jeong, K.U. Poly(trimethylene monothiocarbonate) from the Alternating Copolymerization of COS and Oxetane: A Semicrystalline Copolymer. Macromolecules 2016, 49, 8863–8868. [Google Scholar]
- Petrossian, A.; Residori, S. Surfactant enhanced reorientation in dye-doped nematic liquid crystals. Europhys. Lett. 2002, 60, 79–85. [Google Scholar] [CrossRef]
- Song, D.H.; Kim, J.W.; Kim, K.H.; Rho, S.J.; Lee, H.; Kim, H.; Yoon, T.H. Ultrafast switching of randomly-aligned nematic liquid crystals. Opt. Express 2012, 20, 11659–11664. [Google Scholar] [CrossRef] [PubMed]
- Steinmann, W.; Walter, S.; Beckers, M.; Seide, G.; Gries, T. Applications of Calorimetry in a Wide Context—Differential Scanning Calorimetry; Isothermal Titration Calorimetry and Microcalorimetry: Rijeka, Croatia, 2013. [Google Scholar]
- Bakshi, M.S.; Sachar, S. Surfactant polymer interactions between strongly interacting cationic surfactants and anionic polyelectrolytes from conductivity and turbidity measurements. Colloid Polym. Sci. 2004, 282, 993–999. [Google Scholar] [CrossRef]
- Yoon, W.J.; Lee, K.M.; Evans, D.R.; McConney, M.E.; Kim, D.Y.; Jeong, K.U. Giant surfactants for the construction of automatic liquid crystal alignment layers. J. Mater. Chem. C 2019, 7, 8500–8514. [Google Scholar] [CrossRef]
- Su, H.; Zhang, J.; Wang, C.; Wang, Y.; Zhao, H. Vertical alignment of liquid-crystal molecules due to unilateral anchoring from charge accumulation at the semiconductor interface. Phys. Rev. Appl. 2019, 12, 064029. [Google Scholar] [CrossRef]
- Porte, G. Tilted alignment of MBBA induced by short-chain surfactants. J. Phys. 1976, 37, 1245–1252. [Google Scholar] [CrossRef]
- Campanelli, A.R.; Scaramuzza, L. Hexadecyltrimethylammonium bromide. Sect. C Cryst. Struct. Commun. 1986, 42, 1380–1383. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.-S.; Choi, J.-Y.; Shin, H.-J.; Lee, J.-H.; Oh, S.-W.; Kim, W.-S. An Evaluation of Surface-Active Agent Hexadecyltrimethylammonium Bromide with Vertical Self-Alignment Properties to Align Liquid Crystals for Various Cell Gap Conditions. Appl. Sci. 2022, 12, 12582. https://doi.org/10.3390/app122412582
Ma J-S, Choi J-Y, Shin H-J, Lee J-H, Oh S-W, Kim W-S. An Evaluation of Surface-Active Agent Hexadecyltrimethylammonium Bromide with Vertical Self-Alignment Properties to Align Liquid Crystals for Various Cell Gap Conditions. Applied Sciences. 2022; 12(24):12582. https://doi.org/10.3390/app122412582
Chicago/Turabian StyleMa, Jun-Seok, Jin-Young Choi, Hyun-Ji Shin, Jae-Hwan Lee, Seung-Won Oh, and Wook-Sung Kim. 2022. "An Evaluation of Surface-Active Agent Hexadecyltrimethylammonium Bromide with Vertical Self-Alignment Properties to Align Liquid Crystals for Various Cell Gap Conditions" Applied Sciences 12, no. 24: 12582. https://doi.org/10.3390/app122412582
APA StyleMa, J. -S., Choi, J. -Y., Shin, H. -J., Lee, J. -H., Oh, S. -W., & Kim, W. -S. (2022). An Evaluation of Surface-Active Agent Hexadecyltrimethylammonium Bromide with Vertical Self-Alignment Properties to Align Liquid Crystals for Various Cell Gap Conditions. Applied Sciences, 12(24), 12582. https://doi.org/10.3390/app122412582