Ecological and Health Risk Assessment of Heavy Metals in Farmland in the South of Zhangbei County, Hebei Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Pollution Assessment Methods
2.3.1. Single Factor Index
2.3.2. Nemerow Pollution Index (NIPI)
2.3.3. Geo-Accumulation Index (Iego)
2.3.4. Ecological Risk Index (RI)
2.3.5. Human Health Risk Assessment
2.3.6. Principal Component Analysis (PCA)
2.4. Data Analysis
3. Results
3.1. Distribution of Heavy Metals in Farmland Soil from the Cattle-Producing Area
3.1.1. Spatial Distribution of Heavy Metals in Farmland Planted with Potato
3.1.2. Spatial Distribution of Heavy Metals in Farmland Planted with Hulless Oats
3.2. Concentrations of Heavy Metals in Farmland Soil Dominated by Husbandry
3.2.1. Concentrations of Heavy Metals in Soil Planted with Potato
3.2.2. Concentrations of Heavy Metals in Soil Planted with Hulless Oats
3.3. Pollution Assessment of Soil Planted with Potato in Bashang Farmland
3.4. Pollution Assessment of Heavy Metal in the Soil Planted Hulless Oats
Health Risk Assessment
3.5. Source Identification of Heavy Metals in Oats Soil
3.6. Comparison of Risk Assessment of Heavy Metals in Potato and Oats Soils
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.X.; Zhu, G.Y.; Ge, X.; Xu, G.; Guan, Y.T. Novel insights into heavy metal pollution of farmland based on reactive heavy metals (RHMs): Pollution characteristics, predictive models, and quantitative source apportionment. J. Hazard. Mater. 2018, 360, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Safari, Y.; Delavar, M.A. The influence of soil pollution by heavy metals on the land suitability for irrigated wheat farming in Zanjan region, northwest Iran. Arab. J. Geosci. 2019, 12, 21. [Google Scholar] [CrossRef]
- Zeng, S.Y.; Ma, J.; Yang, Y.J.; Zhang, S.L.; Liu, G.J.; Chen, F. Spatial assessment of farmland soil pollution and its potential human health risks in China. Sci. Total Environ. 2019, 687, 642–653. [Google Scholar] [CrossRef]
- Wang, F.F.; Guan, Q.Y.; Tian, J.; Lin, J.K.; Yang, Y.Y.; Yang, L.Q.; Pan, N.H. Contamination characteristics, source apportionment, and health risk assessment of heavy metals in agricultural soil in the Hexi Corridor. CATENA 2020, 191, 104573. [Google Scholar] [CrossRef]
- Muthukumar, B.; Al Salhi, M.S.; Narenkumar, J.; Devanesan, S.; Tentu Nageswara, R.; Kim, W.; Rajasekar, A. Characterization of two novel strains of Pseudomonas aeruginosa on biodegradation of crude oil and its enzyme activities. Environ. Pollut. 2022, 304, 119223. [Google Scholar] [CrossRef]
- Li, X.; Xiao, J.; Salam, M.M.A.; Chen, G. Evaluation of dendroremediation potential of ten Quercus spp. for heavy metals contaminated soil: A three-year field trial. Sci. Total Environ. 2022, 851, 158232. [Google Scholar] [CrossRef]
- Cao, H.B.; Chen, J.J.; Zhang, J.; Zhang, H.; Qiao, L.; Men, Y. Heavy metals in rice and garden vegetables and their potential health risks to inhabitants in the vicinity of an industrial zone in Jiangsu, China. J. Environ. Sci. 2010, 22, 1792–1799. [Google Scholar] [CrossRef]
- Zhao, F.J.; Ma, Y.B.; Zhu, Y.G.; Tang, Z.; McGrath, S.P. Soil contamination in China: Current status and mitigation strategies. Environ. Sci. Technol. 2015, 49, 750–759. [Google Scholar] [CrossRef]
- Meng, M.; Yang, L.S.; Wei, B.G.; Li, H.R.; Yu, J.P. Contamination assessment and spatial distribution of heavy metals in greenhouse soils in China. J. Ecol. Rural. Environ. 2018, 34, 1019–1026. [Google Scholar]
- Xiang, M.T.; Li, Y.; Yang, J.Y.; Lei, K.G.; Li, Y.; Li, F.; Zheng, D.F.; Fang, X.Q.; Cao, Y. Heavy metal contamination risk assessment and correlation analysis of heavy metal contents in soil and crops. Environ. Pollut. 2021, 278, 116911. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.Y.; Qin, C.Z.; Hong, X.; Kang, G.H.; Qin, M.Z.; Yang, D.; Pang, B.; Li, Y.Y.; He, J.J.; Dick, R.P. Risk assessment and source analysis of soil heavy metal pollution from lower reaches of Yellow River irrigation in China. Sci. Total Environ. 2018, 633, 1136–1147. [Google Scholar] [CrossRef]
- Zhao, Z.P.; Yan, S.; Duan, M.; Fu, J.; Wang, Q.; Liu, Z.F.; Song, F.M.; Tang, B.; Li, C.; Qin, G.W. Assessing heavy metal pollution and potential ecological risk of tea plantation soils. Int. J. Agric. Biol. Eng. 2019, 12, 185–191. [Google Scholar] [CrossRef]
- Muthukumar, B.; Surya, S.; Sivakumar, K.; AlSalhi, M.S.; Rao, T.N.; Devanesan, S.; Arunkumar, P.; Rajasekar, A. Influence of bioaugmentation in crude oil contaminated soil by Pseudomonas species on the removal of total petroleum hydrocarbon. Chemosphere 2023, 310, 136826. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Lu, A.X.; Wang, J.H.; Ma, Z.H.; Pan, L.G.; Feng, X.Y.; Luan, Y.X. Accumulation status, sources and phytoavailability of metals in greenhouse vegetable production systems in Beijing, China. Ecotoxicol. Environ. Saf. 2015, 122, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Li, T.Y.; Song, Y.X.; Yuan, X.Y.; Li, J.Z.; Ji, J.F.; Fu, X.W.; Zhang, Q.; Guo, S.H. Incorporating Bioaccessibility into Human Health Risk Assessment of Heavy Metals in Rice (Oryza sativa L.): A Probabilistic-Based Analysis. J. Agric. Food Chem. 2018, 66, 5683–5690. [Google Scholar] [CrossRef]
- Gabarrón, M.; Faz, A.; Acosta, J.A. Use of multivariable and redundancy analysis to assess the behavior of metals and arsenic in urban soil and road dust affected by metallic mining as a base for risk assessment. J. Environ. Manag. 2018, 206, 192–201. [Google Scholar] [CrossRef]
- Wu, H.H.; Xu, C.B.; Wang, J.H.; Xiang, Y.; Ren, M.; Qie, H.T.; Zhang, Y.J.; Yao, R.H.; Li, L.; Lin, A.J. Health risk assessment based on source identification of heavy metals: A case study of Beiyun River, China. Ecotoxicol. Environ. Saf. 2021, 213, 112046. [Google Scholar] [CrossRef]
- Peirovi-Minaee, R.; Alami, A.; Moghaddam, A.; Zarei, A. Determination of Concentration of Metals in Grapes Grown in Gonabad Vineyards and Assessment of Associated Health Risks. Biol. Trace Elem. Res. 2022, 1–12. [Google Scholar] [CrossRef]
- Matloob, M.H. Using Stripping Voltammetry to Determine Heavy Metals in Cooking Spices Used in Iraq. Pol. J. Environ. Stud. 2016, 25, 2057–2070. [Google Scholar] [CrossRef]
- Núñez, O.; Fernández-Navarro, P.; Martín-Méndez, I.; Bel-Lan, A.; Locutura Rupérez, J.F.; López-Abente, G. Association between heavy metal and metalloid levels in topsoil and cancer mortality in Spain. Environ. Sci. Pollut. Res. 2017, 24, 7413–7421. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Pandey, R.; Sharma, B. Modulation of Superoxide Dismutase Activity by Mercury, Lead, and Arsenic. Biol. Trace Elem. Res. 2020, 196, 654–661. [Google Scholar] [CrossRef] [PubMed]
- Fei, X.; Lou, Z.; Xiao, R.; Lv, X.; Christakos, G. Contamination and Health Risk Assessment of Heavy Metal Pollution in Soils Developed from Different Soil Parent Materials. Expo. Health 2022, 1–14. [Google Scholar] [CrossRef]
- Zhang, X.W.; Yang, L.S.; Li, Y.H.; Li, H.R.; Wang, W.Y.; Ye, B.X. Impacts of lead/zinc mining and smelting on the environment and human health in China. Environ. Monit. Assess. 2012, 184, 2261–2273. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.Y.; Zhang, Y.X.; Huang, B.; Teng, Y. Soil environmental quality in greenhouse vegetable production systems in eastern China: Current status and management strategies. Chemosphere 2017, 170, 183–195. [Google Scholar] [CrossRef]
- Liu, P.; Hu, W.Y.; Tian, K.; Huang, B.; Zhao, Y.C.; Wang, X.K.; Zhou, Y.Q.; Shi, B.; Kwon, B.O.; Choi, K.; et al. Accumulation and ecological risk of heavy metals in soils along the coastal areas of the Bohai Sea and the Yellow Sea: A comparative study of China and South Korea. Environ. Int. 2020, 137, 105519. [Google Scholar] [CrossRef]
- Chen, Y.X.; Jiang, X.S.; Wang, Y.; Zhuang, D.F. Spatial characteristics of heavy metal pollution and the potential ecological risk of a typical mining area: A case study in China. Process Saf. Environ. Prot. 2018, 113, 204–219. [Google Scholar] [CrossRef]
- Wang, J.R.; Yu, D.Y.; Wang, Y.H.; Du, X.L.; Li, G.C.; Li, B.; Zhao, Y.J.; Wei, Y.H.; Xu, S. Source analysis of heavy metal pollution in agricultural soil irrigated with sewage in Wuqing, Tianjin. Sci. Rep. 2021, 11, 17816. [Google Scholar] [CrossRef]
- Sheng, X.B.; Sun, J.Z.; Liu, Y.X. Effect of land-use and land-cover change on nutrients in soil in Bashang area, China. J. Environ. Sci. 2003, 15, 548–553. [Google Scholar]
- Wang, X.Y.; Su, Z.A.; Ma, J.; Yang, H.K.; He, Z.Y.; Zhou, T. Soil infiltration under different patterns of land use and its influencing factor in the Bashang and Baxia regions of Hebei province. J. Nat. Res. 2020, 35, 1360–1368. [Google Scholar]
- GB15618-2018; Soil Environmental Quality, Risk Control Standard for Soil Contamination of Agricultural Land. China, SEPA, Ministry of Ecology and Environment of the People’s Republic of China: Beiijing, China, 2018.
- Guo, X.X.; Liu, C.Q.; Zhu, Z.Z.; Wang, Z.L.; Li, J. Evaluation methods for soil heavy metals contamination: A review. Chin. J. Ecol. 2011, 30, 889–896. [Google Scholar]
- Zhu, G.X.; Guo, Q.J.; Xiao, H.Y.; Chen, T.B.; Yang, J. Multivariate statistical and lead isotopic analyses approach to identify heavy metal sources in topsoil from the industrial zone of Beijing Capital Iron and Steel Factory. Environ. Sci. Pollut. Res. 2017, 24, 14877–14888. [Google Scholar] [CrossRef] [PubMed]
- Muller, G. Index of geoaccumulation in sediments of the Rhine River. Geojournal 1969, 2, 108–118. [Google Scholar]
- Fei, X.F.; Xiao, R.; Christakos, G.; Langousis, A.; Ren, Z.Q.; Tian, Y.; Lv, X.N. Comprehensive assessment and source apportionment of heavy metals in Shanghai agricultural soils with different fertility levels. Ecol. Indic. 2019, 106, 105508. [Google Scholar] [CrossRef]
- Zhang, G.L.; Bai, J.H.; Xiao, R.; Zhao, Q.Q.; Jia, J.; Cui, B.S.; Liu, X.H. Heavy metal fractions and ecological risk assessment in sediments from urban, rural and reclamation-affected rivers of the Pearl River Estuary, China. Chemosphere 2017, 184, 278–288. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Huang, H.B.; Lin, C.Q.; Yu, R.L.; Yan, Y.; Hu, G.R.; Li, H.J. Contamination assessment, source apportionment and health risk assessment of heavy metals in paddy soils of Jiulong River Basin, Southeast China. RSC. Adv. 2019, 9, 14736–14744. [Google Scholar] [CrossRef] [Green Version]
- Chai, L.; Wang, Y.H.; Wang, X.; Ma, L.; Cheng, Z.X.; Su, L. Pollution characteristics, spatial distributions, and source apportionment of heavy metals in cultivated soil in Lanzhou, China. Ecol. Indic. 2021, 125, 107507. [Google Scholar] [CrossRef]
- Zhao, R.; Guan, Q.Y.; Luo, H.P.; Lin, J.K.; Yang, L.Q.; Wang, F.F.; Pan, N.H.; Yang, Y.Y. Fuzzy synthetic evaluation and health risk assessment quantification of heavy metals in Zhangye agricultural soil from the perspective of sources. Sci. Total Environ. 2019, 697, 134126. [Google Scholar] [CrossRef]
- Hertzberg, R.; Choudhury, H.; Rice, G.; Cogliano, J.; Mukerjee, D.; Teuschler, L. Supplementary guidance for conducting health risk assessment of chemical mixtures. In Proceedings of the Washington, DC, Risk Assessment Forum Technical Panel; EPA: Washington, DC, USA, 2000. [Google Scholar]
- Hu, B.F.; Shao, S.; Ni, H.; Fu, Z.Y.; Hu, L.S.; Zhou, Y.; Min, X.X.; She, S.F.; Chen, S.C.; Huang, M.X.; et al. Current status, spatial features, health risks, and potential driving factors of soil heavy metal pollution in China at province level. Environ. Pollut. 2020, 266, 114961. [Google Scholar] [CrossRef]
- Huang, J.L.; Wu, Y.Y.; Sun, J.X.; Li, X.; Geng, X.L.; Zhao, M.L.; Sun, T.; Fan, Z.Q. Health risk assessment of heavy metal(loid)s in park soils of the largest megacity in China by using Monte Carlo simulation coupled with Positive matrix factorization model. J. Hazard. Mater. 2021, 415, 125629. [Google Scholar] [CrossRef] [PubMed]
- Xie, N.; Kang, C.; Ren, D.X.; Zhang, L. Assessment of the variation of heavy metal pollutants in soil and crop plants through field and laboratory tests. Sci. Total Environ. 2022, 811, 152343. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Chen, T.; Zhang, Y.; Hou, Y.H.; Chang, Q.R. Health risk assessment of heavy metals in agricultural soils and identification of main influencing factors in a typical industrial park in northwest China. Chemosphere 2020, 252, 126591. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, H.; Tang, H.Y.; Wen, J.W.; Li, A.N. Heavy metal pollution characteristics and health risk evaluation of soil around a tungsten-molybdenum mine in Luoyang, China. Environ. Earth Sci. 2021, 80, 293. [Google Scholar]
- Yakamercan, E.; Ari, A.; Aygün, A. Land application of municipal sewage sludge: Human health risk assessment of heavy metals. J. Clean Prod. 2021, 319, 128568. [Google Scholar] [CrossRef]
- Lim, H.S.; Lee, J.S.; Chon, H.T.; Sager, M. Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au–Ag mine in Korea. J. Geochem. Explor. 2008, 96, 223–230. [Google Scholar] [CrossRef]
- Ismail, A.; Toriman, M.E.; Juahir, H.; Zain, S.M.; Habir, N.L.A.; Retnam, A.; Kamaruddin, M.K.A.; Umar, R.; Azid, A. Spatial assessment and source identification of heavy metals pollution in surface water using several chemometric techniques. Mar. Pollut. Bull. 2016, 106, 292–300. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.S.; Hossain, M.B.; Matin, A.; Islam Sarker, M.S. Assessment of heavy metal pollution, distribution and source apportionment in the sediment from Feni River Estuary, Bangladesh. Chemosphere 2018, 202, 25–32. [Google Scholar] [CrossRef]
- Zeng, W.B.; Wan, X.M.; Wang, L.Q.; Lei, M.; Chen, T.B.; Gu, G.Q. Apportionment and location of heavy metal(loid)s pollution sources for soil and dust using the combination of principal component analysis, Geodetector, and multiple linear regression of distance. J. Hazard. Mater. 2022, 438, 129468. [Google Scholar] [CrossRef]
- Patel, P.; Raju, N.J.; Reddy, B.C.S.R.; Suresh, U.; Sankar, D.B.; Reddy, T.V.K. Heavy metal contamination in river water and sediments of the Swarnamukhi River Basin, India: Risk assessment and environmental implications. Environ. Geochem. Health 2018, 40, 609–623. [Google Scholar] [CrossRef]
- Zhao, K.L.; Zhang, L.Y.; Dong, J.Q.; Wu, J.S.; Ye, Z.Q.; Zhao, W.M.; Ding, L.Z.; Fu, W.J. Risk assessment, spatial patterns and source apportionment of soil heavy metals in a typical Chinese hickory plantation region of southeastern China. Geoderma 2020, 360, 114011. [Google Scholar] [CrossRef]
- Liu, L.L.; Liu, Q.Y.; Ma, J.; Wu, H.W.; Qu, Y.J.; Gong, Y.W.; Yang, S.H.; An, Y.F.; Zhou, Y.Z. Heavy metal(loid)s in the topsoil of urban parks in Beijing, China: Concentrations, potential sources, and risk assessment. Environ. Pollut. 2020, 260, 114083. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.L.; Ma, Y.; Liu, Y.Z.; Cheng, J.M.; Wang, X.F. Source analysis and ecological risk assessment of heavy metals in farmland soils around heavy metal industry in Anxin County. Sci. Rep. 2022, 12, 10562. [Google Scholar] [CrossRef] [PubMed]
- Sherief, L.M.; Abdelkhalek, E.R.; Gharieb, A.F.; Sherbiny, H.S.; Usef, D.M.; Almalky, M.A.A.; Kamal, N.M.; Salama, M.A.; Gohar, W. Cadmium Status Among Pediatric Cancer Patients in Egypt. Medicine 2015, 94, e740. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Zhong, T.Y.; Chen, D.M.; Cheng, M.; Liu, L.; Zhang, X.M.; Li, X.H. Assessment of arsenic (As) occurrence in arable soil and its related health risk in China. Environ. Geochem. Health 2016, 38, 691–702. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Xue, Z.J.; Wang, F.; Sun, Z.M.; Yang, Z.X.; Liu, S.Q. Contamination and health risks from heavy metals in cultivated soil in Zhangjiakou City of Hebei Province, China. Environ. Monit. Assess. 2015, 187, 754. [Google Scholar] [CrossRef]
- Xiong, Z. Studies on Pollution Characteristics and Risk Assessment of Heavy Metals in Hebei’s Farmland Soil—A Case of Cadmium and Nickel. Master’s Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2017. [Google Scholar]
- Ru, S.H.; Su, D.C.; Zhang, Y.Z.; Zhang, G.Y.; Geng, N.; Sun, S.Y.; Wang, L. Contents and characteristics of heavy metals in the livestock and poultry manure from the Large-scale farms in Hebei Province, China. J. Agric. Resour. Environ. 2016, 33, 537–539. [Google Scholar]
- Liu, B.; Cui, X.T.; Wang, X.Q.; Hu, Q.H. Source identification and health risk assessment of heavy metals in groundwater of Yongqing County, Hebei Province. J. Ecol. Rural. Environ. 2022, 03, 1–13. [Google Scholar]
- Sun, S.; Li, J.M.; Ma, Y.B.; Zhao, H.W. Accumulation of heavy metals in soil and vegetables of greenhouses in Hebei Province, China. J. Agric. Resour. Environ. 2019, 36, 236–244. [Google Scholar]
- Gu, Y.G.; Li, Q.S.; Fang, J.H.; He, B.Y.; Fu, H.B.; Tong, Z.J. Identification of heavy metal sources in the reclaimed farmland soils of the pearl river estuary in China using a multivariate geostatistical approach. Ecotoxicol. Environ. Saf. 2014, 105, 7–12. [Google Scholar] [CrossRef]
- Zhang, M.M.; He, P.; Qiao, G.; Huang, J.T.; Yuan, X.T.; Li, Q. Heavy metal contamination assessment of surface sediments of the Subei Shoal, China: Spatial distribution, source apportionment and ecological risk. Chemosphere 2019, 223, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.C.; Lin, Z.J.; Wan, X.; Feng, L. Risk assessment for the mercury polluted site near a pesticide plant in Changsha, Hunan, China. Chemosphere 2017, 169, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Qin, G.W.; Niu, Z.D.; Yu, J.D.; Li, Z.H.; Ma, J.Y.; Xiang, P. Soil heavy metal pollution and food safety in China: Effects, sources and removing technology. Chemosphere 2021, 267, 129205. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.R.; Ma, J.; Wu, X.; Ju, T.N.; Lin, X.L.; Zhang, Y.Y.; Li, X.H.; Gong, Y.W.; Hou, H.; Zhao, L.; et al. Inventories of heavy metal inputs and outputs to and from agricultural soils: A review. Ecotoxicol. Environ. Saf. 2018, 164, 118–124. [Google Scholar] [CrossRef]
- Luo, L.; Ma, Y.B.; Zhang, S.Z.; Wei, D.P.; Zhu, Y.G. An inventory of trace element inputs to agricultural soils in China. J. Environ. Manage. 2009, 90, 2524–2530. [Google Scholar] [CrossRef]
- Hu, W.Y.; Wang, H.F.; Dong, L.R.; Huang, B.; Borggaard, O.K.; Bruun Hansen, H.C.; He, Y.; Holm, P.E. Source identification of heavy metals in peri-urban agricultural soils of southeast China: An integrated approach. Environ. Pollut. 2018, 237, 650–661. [Google Scholar] [CrossRef]
- Qasemi, M.; Darvishian, M.; Nadimi, H.; Gholamzadeh, M.; Afsharnia, M.; Farhang, M.; Allahdadi, M.; Darvishian, M.; Zarei, A. Characteristics, water quality index and human health risk from nitrate and fluoride in Kakhk city and its rural areas, Iran. J. Food Compos. Anal. 2023, 115, 104870. [Google Scholar] [CrossRef]
- Jia, J.; Bai, J.H.; Xiao, R.; Tian, S.M.; Wang, D.W.; Wang, W.; Zhang, G.L.; Cui, H.; Zhao, Q.Q. Fractionation, source, and ecological risk assessment of heavy metals in cropland soils across a 100-year reclamation chronosequence in an estuary, South China. Sci. Total Environ. 2022, 807, 151725. [Google Scholar] [CrossRef]
- Chen, Z.F.; Zhao, Y.; Gu, L.; Wang, S.F.; Li, Y.L.; Dong, F.L. Accumulation and Localization of Cadmium in Potato (Solanum tuberosum) Under Different Soil Cd Levels. Bull. Environ. Contam. Toxicol. 2014, 92, 745–751. [Google Scholar] [CrossRef]
- Fitamo, D.; Leta, S.; Belay, G.; Lemma, B.; Olsson, M. Phytoavailability of Heavy Metals and Metalloids in Soils Irrigated with Wastewater, Akaki, Ethiopia: A Greenhouse Study. Soil. Sediment. Contam. 2011, 20, 745–766. [Google Scholar] [CrossRef]
- Gupta, N.; Yadav, K.K.; Kumar, V.; Cabral-Pinto, M.M.S.; Alam, M.; Kumar, S.; Prasad, S. Appraisal of contamination of heavy metals and health risk in agricultural soil of Jhansi city, India. Environ. Toxicol. Pharmacol. 2021, 88, 103740. [Google Scholar] [CrossRef] [PubMed]
Element (mg/kg) | Min 1 | Max 2 | Median | Mean | SD 3 | CV 4 (%) | Higher than Risk Screening Value 5 (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P 6 | O 7 | P | O | P | O | P | O | P | O | P | O | P | O | |
Cd | 0.05 | 0.07 | 0.34 | 0.97 | 0.18 | 0.17 | 0.18 | 0.20 | 0.06 | 0.17 | 36 | 83 | 0 | 8 |
Cu | 19.72 | 20.45 | 40.72 | 54.84 | 27.76 | 31.70 | 28.90 | 34.43 | 5.54 | 10.76 | 19 | 31 | 0 | 0 |
Pb | 2.96 | 2.58 | 20.36 | 21.45 | 16.22 | 15.43 | 15.44 | 14.31 | 3.38 | 4.16 | 22 | 29 | 0 | 0 |
Zn | 48.37 | 52.81 | 95.84 | 122.53 | 68.68 | 74.82 | 69.39 | 79.01 | 11.63 | 21.82 | 17 | 28 | 0 | 0 |
Cr | 15.79 | 24.8 | 107.63 | 124.24 | 80.11 | 90.16 | 78.43 | 88.12 | 17.17 | 22.90 | 22 | 26 | 0 | 0 |
As | −8.50 | −8.48 | 14.15 | 14.18 | 8.43 | 8.58 | 8.37 | 8.37 | 4.08 | 4.29 | 49 | 51 | 0 | 0 |
Hg | −0.18 | −0.24 | 0.25 | 2.42 | 0.02 | 0.02 | 0.02 | 0.07 | 0.10 | 0.51 | 405 | 716 | 0 | 4 |
Ni | 33.87 | 36.32 | 76.89 | 141.37 | 51.63 | 56.58 | 53.09 | 72.22 | 15.73 | 31.24 | 20 | 43 | 0 | 8 |
pH | 6.86 | 6.83 | 8.92 | 8.7 | 8.10 | 8.09 | 8.06 | 7.95 |
Non-Carcinogenic Risk Index | ||||||||
---|---|---|---|---|---|---|---|---|
element | HQoral | HQinh | HQdermal | HI | ||||
adult | children | adult | children | adult | children | adult | children | |
Cd | 3.56 × ×10−10 | 2.54 × 10−3 | 3.33 × 10−14 | 5.95 × 10−8 | 1.24 × 10−14 | 1.63 × 10−14 | 4.86 × 10−6 | 2.58 × 10−3 |
Cu | 1.52 × 10−7 | 1.03 × 10−6 | 1.41 × 10−11 | 2.52 × 10−11 | 4.39 × 10−9 | 5.77 × 10−9 | ||
Pb | 7.20 × 10−9 | 5.14 × 10−8 | 6.71 × 10−13 | 1.20 × 10−12 | 4.18 × 10−12 | 5.50 × 10−12 | ||
Zn | 4.64 × 10−6 | 3.31 × 10−5 | 4.35 × 10−10 | 7.76 × 10−10 | 2.02 × 10−9 | 2.65 × 10−9 | ||
Cr | 5.17 × 10−8 | 3.69 × 10−7 | 5.09 × 10−14 | 9.08 × 10−14 | 2.25 × 10−12 | 2.96 × 10−12 | ||
As | 4.91 × 10−10 | 3.51 × 10−9 | 1.12 × 10−13 | 2.01 × 10−13 | 1.04 × 10−11 | 1.37 × 10−11 | ||
Hg | 4.14 × 10−12 | 2.96 × 10−11 | 3.88 × 10−16 | 6.94 × 10−16 | 5.88 × 10−13 | 7.72 × 10−13 | ||
Ni | 4.34 × 10−9 | 3.03 × 10−8 | 9.69 × 10−13 | 1.73 × 10−12 | 8.99 × 10−11 | 1.18 × 10−10 | ||
Carcinogenic risk index | ||||||||
elements | CRoral | CRinh | CRdermal | TCR | ||||
adult | children | adult | children | adult | children | adult | children | |
Cd | 9.30 × 10−7 | 1.33 × 10−6 | 2.57 × 10−14 | 9.19 × 10−15 | 8.09 × 10−9 | 2.13 × 10−9 | 1.08 × 10−5 | 1.50 × 10−5 |
Cr | ND | ND | 2.62 × 10−7 | 9.35 × 10−8 | ND | ND | ||
As | 9.47 × 10−6 | 1.35 × 10−5 | 2.54 × 10−12 | 9.09 × 10−13 | 8.24 × 10−8 | 2.16 × 10−8 | ||
Ni | ND | ND | 4.29 × 10−9 | 1.53 × 10−9 | ND | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhu, Q.; Tang, X.; Wang, C.; Zhai, S. Ecological and Health Risk Assessment of Heavy Metals in Farmland in the South of Zhangbei County, Hebei Province, China. Appl. Sci. 2022, 12, 12425. https://doi.org/10.3390/app122312425
Li Y, Zhu Q, Tang X, Wang C, Zhai S. Ecological and Health Risk Assessment of Heavy Metals in Farmland in the South of Zhangbei County, Hebei Province, China. Applied Sciences. 2022; 12(23):12425. https://doi.org/10.3390/app122312425
Chicago/Turabian StyleLi, Yanhua, Qing Zhu, Xuejiao Tang, Cuiping Wang, and Sheng Zhai. 2022. "Ecological and Health Risk Assessment of Heavy Metals in Farmland in the South of Zhangbei County, Hebei Province, China" Applied Sciences 12, no. 23: 12425. https://doi.org/10.3390/app122312425
APA StyleLi, Y., Zhu, Q., Tang, X., Wang, C., & Zhai, S. (2022). Ecological and Health Risk Assessment of Heavy Metals in Farmland in the South of Zhangbei County, Hebei Province, China. Applied Sciences, 12(23), 12425. https://doi.org/10.3390/app122312425