Characterization of Ductile Crack Propagation by Fractal Energy Dissipation Rate
Abstract
:1. Introduction
2. Fractal Aspects and Energy Dissipation Rate in Fracture
3. Fracture Resistance and Energy Dissipation Rate in Ductile Crack Extension
4. Experimental Validation
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, T. Fracture Mechanics: Fundamentals and Applications; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Wittmann, F.; Mihashi, H.; Nomura, N. Size effect on fracture energy of concrete. Eng. Fract. Mech. 1990, 35, 107–115. [Google Scholar] [CrossRef]
- Betegon, C.; Hancock, J. Two-parameter characterization of elastic-plastic crack-tip fields. Appl. Mech. 1991, 58, 104–110. [Google Scholar] [CrossRef]
- O’dowd, N.; Shih, C.F. Family of crack-tip fields characterized by a triaxiality parameter—I. Structure of fields. J. Mech. Phys. Solids 1991, 39, 989–1015. [Google Scholar] [CrossRef]
- Chao, Y.; Yang, S.; Sutton, M. On the fracture of solids characterized by one or two parameters: Theory and practice. J. Mech. Phys. Solids 1994, 42, 629–647. [Google Scholar] [CrossRef]
- Chao, Y.; Zhu, X. Constraint-modified J− R curves and its application to ductile crack growth. Int. J. Fract. 2000, 106, 135–160. [Google Scholar] [CrossRef]
- Turner, C.; Kolednie, O. A micro and macro approach to the energy dissipation rate model of stable ductile crack growth. Fatigue Fract. Eng. Mater. Struct. 1994, 17, 1089–1107. [Google Scholar] [CrossRef]
- Turner, C.; Kolednik, O. Application of energy dissipation rate arguments to stable crack growth. Fatigue Fract. Eng. Mater. Struct. 1994, 17, 1109–1127. [Google Scholar] [CrossRef]
- Mandelbrot, B.; Passoja, D.; Paullay, A. Fractal character of fractal surfaces of metal. Nature 1986, 320, 429–431. [Google Scholar]
- Mandelbrot, B.; Mandelbrot, B.B. The Fractal Geometry of Nature; WH Freeman: New York, NY, USA, 1982. [Google Scholar]
- Williford, R. Fractal fatigue. Scr. Met. Mater. 1990, 24, 455–460. [Google Scholar] [CrossRef]
- Gong, B.; Lai, Z. Fractal characteristics of J-R resistance curves of Ti-6A1-4V alloys. Eng. Fract. Mech. 1993, 44, 991–995. [Google Scholar]
- Kleiser, T.; Bocek, M. The fractal nature of slip in crystals. Z. Für Met. 1986, 77, 582–587. [Google Scholar]
- Mosolov, A. Mechanics of fractal cracks in brittle solids. EPL (Europhys. Lett.) 1993, 24, 673. [Google Scholar] [CrossRef]
- Goldshtein, R.; Mosolov, A. Fractal cracks. J. Appl. Math. Mech. 1992, 56, 563–571. [Google Scholar] [CrossRef]
- Yavari, A. Generalization of Barenblatt’s cohesive fracture theory for fractal cracks. Fractals 2002, 10, 189–198. [Google Scholar] [CrossRef]
- Alves, L.; Da Silva, R.; Lacerda, L. Fractal modeling of the J–R curve and the influence of the rugged crack growth on the stable elastic–plastic fracture mechanics. Eng. Fract. Mech. 2010, 77, 2451–2466. [Google Scholar] [CrossRef]
- Carpinteri, A.; Chiaia, B. Crack-resistance behavior as a consequence of self-similar fracture topologies. Int. J. Fract. 1996, 76, 327–340. [Google Scholar] [CrossRef]
- Carpinteri, A. Scaling laws and renormalization groups for strength and toughness of disordered materials. Int. J. Solids Struct. 1994, 31, 291–302. [Google Scholar] [CrossRef]
- Carpinteri, A. Fractal nature of material microstructure and size effects on apparent mechanical properties. Mech. Mater. 1994, 18, 89–101. [Google Scholar] [CrossRef]
- Carpinteri, A.; Chiaia, B.; Ferro, G. Size effects on nominal tensile strength of concrete structures: Multifractality of material ligaments and dimensional transition from order to disorder. Mater. Struct. 1995, 28, 311–317. [Google Scholar] [CrossRef]
- Carpinteri, A.; Ferro, G. Size effects on tensile fracture properties: A unified explanation based on disorder and fractality of concrete microstructure. Mater. Struct. 1994, 27, 563–571. [Google Scholar] [CrossRef]
- Carpinteri, A.; Chiaia, B. Multifractal nature of concrete fracture surfaces and size effects on nominal fracture energy. Mater. Struct. 1995, 28, 435–443. [Google Scholar] [CrossRef]
- Borodich, F. Some applications of the fractal parametric-homogeneous functions. Fractals 1994, 2, 311–314. [Google Scholar] [CrossRef]
- BS7448-4; Fracture Mechanics Toughness Test-Part 4: Method for Determination of Fracture Resistance Curve and Initiation Values for Stable Crack Extension in Metallic Materials. BSI: London, UK, 1997.
- E1820-01; Standard Test Measurement for Fracture Toughness. ASTM: West Conshohocken, PA, USA, 2001.
- Sumpter, J. The energy dissipation rate approach to tearing instability. Eng. Fract. Mech. 2004, 71, 17–37. [Google Scholar] [CrossRef]
- Sumpter, J. An alternative view of R curve testing. Eng. Fract. Mech. 1999, 64, 161–176. [Google Scholar] [CrossRef]
- Sumpter, J. Size effects in tearing instability: An analysis based on energy dissipation rate. Eng. Fract. Mech. 2007, 74, 2352–2374. [Google Scholar] [CrossRef]
- Memhard, D.; Brocks, W.; Fricke, S. Characterization of ductile tearing resistance by energy dissipation rate. Fatigue Fract. Eng. Mater. Struct. 1993, 16, 1109–1124. [Google Scholar] [CrossRef] [Green Version]
- Carpinteri, A.; Gong, B.; Corrado, M. Hardening cohesive/overlapping zone model for metallic materials: The size-scale independent constitutive law. Eng. Fract. Mech. 2012, 82, 29–45. [Google Scholar] [CrossRef]
- Brocks, W.; Anuschewski, P. Parametrizing ductile tearing resistance by four parameters. Eng. Fract. Mech. 2004, 71, 127–146. [Google Scholar] [CrossRef]
- Brocks, W.; Anuschewski, P.; Hellmann, D. A concept for scaling J R-curves by plastic constraint factors. Int. J. Fract. 2004, 130, 455–469. [Google Scholar] [CrossRef]
- Milliken, G. Nonlinear Regression Analysis and Its Applications; Taylor & Francis: Abingdon-on-Thames, UK, 1990. [Google Scholar]
- Zhu, X.; Joyce, J. J–Resistance curve testing of HY80 steel using SE (B) specimens and normalization method. Eng. Fract. Mech. 2007, 74, 2263–2281. [Google Scholar] [CrossRef]
- Anuschewski, P.; Brocks, W.; Hellmann, D. Characterisation of Ductile Tearing Resistance by the Energy Dissipation Rate: Effects of Material, Specimen Shape and Size; GKSS Report GKSS-2002/13; GKSS-Forschungszentrum Geesthacht GmbH: Geesthacht, Germany, 2002. [Google Scholar]
- Hähner, P.; Bay, K.; Zaiser, M. Fractal dislocation patterning during plastic deformation. Phys. Rev. Lett. 1998, 81, 2470. [Google Scholar] [CrossRef] [Green Version]
- Carpinteri, A.; Lacidogna, G.; Niccolini, G. Fractal analysis of damage detected in concrete structural elements under loading. Chaos Solitons Fractals 2009, 42, 2047–2056. [Google Scholar] [CrossRef]
- Carpinteri, A. Mechanical Damage and Crack Growth in Concrete: Plastic Collapse to Brittle Fracture; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Carpinteri, A. Decrease of apparent tensile and bending strength with specimen size: Two different explanations based on fracture mechanics. Int. J. Solids Struct. 1989, 25, 407–429. [Google Scholar] [CrossRef]
- Carpinteri, A.; Lacidogna, G.; Puzzi, S. From criticality to final collapse: Evolution of the “b-value” from 1.5 to 1.0. Chaos Solitons Fractals 2009, 41, 843–853. [Google Scholar] [CrossRef]
- Miguel, M.; Vespignani, A.; Zapperi, S.; Weiss, J.; Grasso, J. Intermittent dislocation flow in viscoplastic deformation. Nature 2001, 410, 667–671. [Google Scholar] [CrossRef] [Green Version]
- Weiss, J.; Marsan, D. Three-dimensional mapping of dislocation avalanches: Clustering and space/time coupling. Science 2003, 299, 89–92. [Google Scholar] [CrossRef]
Material Type | Specimen Number | W [mm] | Tn [mm] | a0/W [mm] | H | DΔa | γp* |
---|---|---|---|---|---|---|---|
HY80 | SE(B)-A | 50.75 | 25.4 | 0.40 | 0.3258 | 2.6472 | 40.1 |
SE(B)-B | 50.75 | 25.4 | 0.55 | 0.4166 | 2.5834 | 48.2 | |
SE(B)-C | 50.75 | 25.4 | 0.60 | 0.4528 | 2.5472 | 45.9 | |
20MnMoNi55 Group A | C(T)-0.5T | 25.00 | 8.0 | 0.67 | 0.2823 | 2.7177 | 104.5 |
C(T)-1T | 50.00 | 8.0 | 0.61 | 0.3749 | 2.6251 | 164.5 | |
C(T)-4T | 200.00 | 8.0 | 0.60 | 0.3837 | 2.6163 | 98.3 | |
20MnMoNi55 Group B | C(T)-0.5T | 25.00 | 4.0 | 0.62 | 0.2163 | 2.7837 | 105.6 |
C(T)-1T | 50.00 | 4.0 | 0.61 | 0.3215 | 2.6785 | 104.0 | |
C(T)-4T | 200.00 | 4.0 | 0.60 | 0.3590 | 2.6410 | 119.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Zhao, Y.; Lacidogna, G.; Gong, B.; Wang, S. Characterization of Ductile Crack Propagation by Fractal Energy Dissipation Rate. Appl. Sci. 2022, 12, 12388. https://doi.org/10.3390/app122312388
Zhao Y, Zhao Y, Lacidogna G, Gong B, Wang S. Characterization of Ductile Crack Propagation by Fractal Energy Dissipation Rate. Applied Sciences. 2022; 12(23):12388. https://doi.org/10.3390/app122312388
Chicago/Turabian StyleZhao, Yunfeng, Yangyang Zhao, Giuseppe Lacidogna, Baoming Gong, and Sheng Wang. 2022. "Characterization of Ductile Crack Propagation by Fractal Energy Dissipation Rate" Applied Sciences 12, no. 23: 12388. https://doi.org/10.3390/app122312388
APA StyleZhao, Y., Zhao, Y., Lacidogna, G., Gong, B., & Wang, S. (2022). Characterization of Ductile Crack Propagation by Fractal Energy Dissipation Rate. Applied Sciences, 12(23), 12388. https://doi.org/10.3390/app122312388