Clinical Characterization of Inpatients with Acute Conjunctivitis: A Retrospective Analysis by Natural Language Processing and Machine Learning
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Source
2.3. Objectives
2.4. Study Population
2.5. Extraction of the Unstructured Information from EHRs
2.6. External Validation of EHRead®’s Performance
2.7. Statistical Data Analyses
2.8. Ethical Considerations
3. Results
3.1. Study Population and Linguistic Validation of the System
3.2. Characterization of the Target Population
3.3. Microbiology Results and Conjunctivitis-Related Signs and Symptoms
3.4. Treatments
3.5. Visits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leibowitz, H.M. The red eye. N. Engl. J. Med. 2000, 343, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Udeh, B.L.; Schneider, J.E.; Ohsfeldt, R.L. Cost effectiveness of a point-of-care test for adenoviral conjunctivitis. Am. J. Med. Sci. 2008, 336, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Azari, A.A.; Barney, N.P. Conjunctivitis: A systematic review of diagnosis and treatment. JAMA 2013, 310, 1721–1729. [Google Scholar] [CrossRef] [PubMed]
- Epling, J. Bacterial conjunctivitis. BMJ Clin. Evid. 2012, 2012, 704. [Google Scholar]
- Bielory, B.P.; O’Brien, T.P.; Bielory, L. Management of seasonal allergic conjunctivitis: Guide to therapy. Acta Ophthalmol. 2012, 90, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Hovding, G. Acute bacterial conjunctivitis. Acta Ophthalmol. 2008, 86, 5–17. [Google Scholar] [CrossRef]
- Alfonso, S.A.; Fawley, J.D.; Alexa Lu, X. Conjunctivitis. Prim. Care 2015, 42, 325–345. [Google Scholar] [CrossRef]
- Smith, A.F.; Waycaster, C. Estimate of the direct and indirect annual cost of bacterial conjunctivitis in the United States. BMC Ophthalmol. 2009, 9, 13. [Google Scholar] [CrossRef]
- Azari, A.A.; Arabi, A. Conjunctivitis: A Systematic Review. J. Ophthalmic Vis. Res. 2020, 15, 372–395. [Google Scholar] [CrossRef]
- Sheikh, A.; Hurwitz, B.; van Schayck, C.P.; McLean, S.; Nurmatov, U. Antibiotics versus placebo for acute bacterial conjunctivitis. Cochrane Database Syst. Rev. 2012, 9, CD001211. [Google Scholar] [CrossRef]
- Lovato, L.C.; Hill, K.; Hertert, S.; Hunninghake, D.B.; Probstfield, J.L. Recruitment for controlled clinical trials: Literature summary and annotated bibliography. Control Clin. Trials 1997, 18, 328–352. [Google Scholar] [CrossRef] [PubMed]
- McDonald, A.M.; Knight, R.C.; Campbell, M.K. What influences recruitment to randomised controlled trials? A review of trials funded by two UK funding agencies. Trials 2006, 7, 9. [Google Scholar] [CrossRef] [PubMed]
- Sheikhalishahi, S.; Miotto, R.; Dudley, J.T.; Lavelli, A.; Rinaldi, F.; Osmani, V. Natural Language Processing of Clinical Notes on Chronic Diseases: Systematic Review. JMIR Med. Inform. 2019, 7, e12239. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, B.A.; Navar, A.M.; Pencina, M.J.; Ioannidis, J.P. Opportunities and challenges in developing risk prediction models with electronic health records data: A systematic review. J. Am. Med. Inform. Assoc. 2017, 24, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Thompson, W.K.; Herr, T.M. Natural Language Processing for EHR-Based Pharmacovigilance: A Structured Review. Drug Saf. 2017, 40, 1075–1089. [Google Scholar] [CrossRef]
- Izquierdo, J.L.; Almonacid, C.; González, Y. The Impact of COVID-19 on Patients with Asthma. Eur. Res. J. 2020, 57, 2003142. [Google Scholar] [CrossRef]
- Ancochea, J.; Izquierdo, J.L.; Medrano, I.H.; Porras, A.; Serrano, M.; Lumbreras, S.; Del Rio-Bermudez, C.; Marchesseau, S.; Salcedo, I.; Zubizarreta, I.; et al. Evidence of gender differences in the diagnosis and management of COVID-19 patients: An analysis of Electronic Health Records using Natural Language Processing and machine learning. J. Women Health 2021, 30, 393–404. [Google Scholar] [CrossRef]
- Izquierdo, J.L.; Ancochea, J.; Soriano, J.B. Clinical Characteristics and Prognostic Factors for Intensive Care Unit Admission of Patients With COVID-19: Retrospective Study Using Machine Learning and Natural Language Processing. J. Med. Internet Res. 2020, 22, e21801. [Google Scholar] [CrossRef]
- Graziani, D.; Soriano, J.B.; Del Rio-Bermudez, C. Characteristics and Prognosis of COVID-19 in Patients with COPD. J. Clin. Med. 2020, 9, 3259. [Google Scholar] [CrossRef]
- González-Juanatey, C.; Anguita-Sánchez, M.; Barrios, V.; Núñez-Gil, I.; Gómez-Doblas, J.J.; García-Moll, X. Assessment of medical management in Coronary Type 2 Diabetic patients with previous percutaneous coronary intervention in Spain: A retrospective analysis of electronic health records using Natural Language Processing. PLoS ONE 2022, 17, e0263277. [Google Scholar] [CrossRef]
- Gomollón, F.G.; Gisbert, J.P.; Guerra, I.; Montoto, C. Clinical Characteristics and Prognostic Factors for Crohn’s Disease Relapses using Natural Language Processing and Machine Learning—A Pilot Study. Eur. J. Gastroenterol. Hepatol. 2022, 34, 389–397. [Google Scholar] [CrossRef]
- Del Rio-Bermudez, C.; Medrano, I.H.; Yebes, L.; Poveda, J.L. Towards a symbiotic relationship between big data, artificial intelligence, and hospital pharmacy. J. Pharm. Policy Pract. 2020, 13, 75. [Google Scholar] [CrossRef]
- Canales, L.; Menke, S.; Marchesseau, S.; D’Agostino, A.; Del Rio-Bermudez, C.; Taberna, M. Assessing the Performance of Clinical Natural Language Processing Systems: Development of an Evaluation Methodology. JMIR Med. Inform. 2021, 9, e20492. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Anke, L.T.J.; Pardo, A.; Medrano, I.; Ureña, A.; Salcedo, I.; Saggion, H. Savana: A Global Information Extraction and Terminology Expansion Framework in the Medical Domain Procesamiento del Lenguaje Natural. Soc. Espanol. Proc. Nat. 2016, 57, 23–30. [Google Scholar]
- Benson, T. Principles of Health Interoperability HL7 and SNOMED; Springer: London, UK, 2012. [Google Scholar]
- Yeu, E.; Hauswirth, S. A Review of the Differential Diagnosis of Acute Infectious Conjunctivitis: Implications for Treatment and Management. Clin. Ophthalmol. 2020, 14, 805–813. [Google Scholar] [CrossRef] [PubMed]
- Rose, P. Management strategies for acute infective conjunctivitis in primary care: A systematic review. Expert Opin. Pharmacother. 2007, 8, 1903–1921. [Google Scholar] [CrossRef]
- Woodward, M.; Maganti, N.; Niziol, L.; Amin, S.; Hou, A.; Singh, K. Development and Validation of a Natural Language Processing Algorithm to Extract Descriptors of Microbial Keratitis from the Electronic Health Record. Cornea 2021, 40, 1548–1553. [Google Scholar] [CrossRef]
- Meaders, B.C.; Azar, J.M. Bacterial conjunctivitis: A review of therapies and approaches. Adv. NPs PAs 2012, 3, 25–29, 34. [Google Scholar]
- Mas-Tur, V.; Jawaid, I.; Poostchi, A.; Verma, S. Optometrist referrals to an emergency ophthalmology department: A retrospective review to identify current practise and development of shared care working strategies, in England. Eye 2021, 35, 1340–1346. [Google Scholar] [CrossRef] [PubMed]
- Orden Martínez, B.; Martínez Ruiz, R.; Millán Pérez, R. Bacterial conjunctivitis: Most prevalent pathogens and their antibiotic sensitivity. An. Pediatr. 2004, 61, 32–36. [Google Scholar] [CrossRef]
- Benitez-Del-Castillo, J.; Verboven, Y.; Stroman, D.; Kodjikian, L. The role of topical moxifloxacin, a new antibacterial in Europe, in the treatment of bacterial conjunctivitis. Clin. Drug Investig. 2011, 31, 543–557. [Google Scholar] [CrossRef] [PubMed]
N = 6583 | |
---|---|
Demographic characteristics | |
Age (years) | |
Mean ± SD | 54.83 ± 20.64 |
Median (Q1, Q3) | 53 (37.5, 72) |
<65 years old, % | 64.4 |
≥65 years old, % | 35.5 |
Gender, N (%) | |
Female | 3760 (57.1) |
Male | 2823 (42.9) |
Comorbidities, N (%) | |
Cardiovascular disorders | |
Anemia | 1064 (16.2) |
Angina | 307 (4.7) |
Atrial Fibrillation | 711 (10.8) |
Heart Failure | 972 (14.8) |
Hypertension | 3343 (50.8) |
Endocrine disorders | |
Diabetes | 797 (12.1) |
Dyslipidemia | 2627 (39.9) |
Hypoglycemia | 207 (3.1) |
Hyperthyroidism | 137 (2.1) |
Hypothyroidism | 636 (9.7) |
Musculoskeletal and connective tissue disorders | |
Foot ulcer | 15 (0.2) |
Nervous system disorders | |
Diabetic peripheral neuropathy | 38 (0.6) |
Psychiatric disorders | |
Depression | 800 (12.2) |
Anxiety | 962 (14.6) |
Respiratory, thoracic, and mediastinal disorders | |
COPD | 530 (8.1) |
Asthma | 1024 (15.6) |
Cancer | 1558 (23.7) |
Eye disorders | |
Astigmatism | 77 (1.2) |
Diabetic retinopathy | 196 (3) |
Glaucoma | 340 (5.2) |
Farsightedness | 36 (0.5) |
Myopia | 318 (4.8) |
Presbyopia | 82 (1.2) |
Patients (6583) | |
---|---|
Microbiologically confirmed bacterial conjunctivitis n (%) | 795 (12.1) |
Polymicrobial positivity n (%) | 257 (32.3) |
Enterobacteriaceae n (%) | 90 (11.3) |
Haemophilus influenzae n (%) | 55 (6.9) |
Moraxella catarrhalis n (%) | 18 (2.3) |
Moraxella lacunata n (%) | 1 (0.1) |
Neisseria meningitidis n (%) | 33 (4.2) |
Non-fermentative Gram-negative bacilli n (%) | 296 (37.2) |
Proteus n (%) | 37 (4.7) |
Pseudomonas n (%) | 110 (13.8) |
Staphylococcus aureus n (%) | 189 (23.8) |
Staphylococcus epidermidis n (%) | 64 (8.1) |
Streptococcus pneumoniae n (%) | 279 (35.1) |
Streptococcus pyogenes n (%) | 34 (4.3) |
Streptococcus viridans n (%) | 7 (0.9) |
Patients (6583) | |
---|---|
Conjunctival hyperemia n (%) | 4908 (74.6) |
Conjunctival discharge n (%) | 618 (9.4) |
Bulbar conjunctival injection n (%) | 105 (1.6) |
Ocular pain n (%) | 731 (11.1) |
Chemosis n (%) | 500 (7.6) |
Foreign body sensation n (%) | 643 (9.8) |
Tearing n (%) | 1367 (20.8) |
Ocular itching n (%) | 2809 (42.7) |
Photophobia n (%) | 232 (3.5) |
Corneal ulcer n (%) | 180 (2.7) |
Patients (6583) | |
---|---|
Classes of topical treatment | |
Antibiotics + Corticosteroids n (%) | 4487 (68.2) |
Antibiotics + NSAIDs n (%) | 2368 (36) |
Antibiotics + NSAIDs + Corticosteroids n (%) | 1148 (17.4) |
Specific topical treatments | |
Gentamycin (Oftalmolosa Cusi Gentamicina) n (%) | 613 (9.3) |
Tobramycin (Tobrex) n (%) | 4631 (70.3) |
Tobramycin and Dexamethasone | |
(Tobradex) n (%) | 3513 (53.4) |
Neomycin (Maxitrol) n (%) | 212 (3.2) |
Tobramycin (Terracortril) n (%) | 373 (5.7) |
Corticosteroids n (%) | 4855 (73.8) |
Dexamethasone (Colircusi Dexamethasone+) n (%) | 3965 (60.2) |
Hydrocortisone (Oftalmolosa Cusi Hydrocortisone+) n (%) | 657 (10) |
Fluorometholone (Isopto Flucon) n (%) | 801 (12.2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valdés Sanz, N.; García-Layana, A.; Colas, T.; Moriche, M.; Montero Moreno, M.; Ciprandi, G. Clinical Characterization of Inpatients with Acute Conjunctivitis: A Retrospective Analysis by Natural Language Processing and Machine Learning. Appl. Sci. 2022, 12, 12352. https://doi.org/10.3390/app122312352
Valdés Sanz N, García-Layana A, Colas T, Moriche M, Montero Moreno M, Ciprandi G. Clinical Characterization of Inpatients with Acute Conjunctivitis: A Retrospective Analysis by Natural Language Processing and Machine Learning. Applied Sciences. 2022; 12(23):12352. https://doi.org/10.3390/app122312352
Chicago/Turabian StyleValdés Sanz, Nuria, Alfredo García-Layana, Teresa Colas, Manuel Moriche, Manuel Montero Moreno, and Giorgio Ciprandi. 2022. "Clinical Characterization of Inpatients with Acute Conjunctivitis: A Retrospective Analysis by Natural Language Processing and Machine Learning" Applied Sciences 12, no. 23: 12352. https://doi.org/10.3390/app122312352
APA StyleValdés Sanz, N., García-Layana, A., Colas, T., Moriche, M., Montero Moreno, M., & Ciprandi, G. (2022). Clinical Characterization of Inpatients with Acute Conjunctivitis: A Retrospective Analysis by Natural Language Processing and Machine Learning. Applied Sciences, 12(23), 12352. https://doi.org/10.3390/app122312352