An In Vitro Model Using TRIS-Buffered Plasma-Activated Water to Reduce Pathogenic Microorganisms Involved in Digital Dermatitis Infection in Cattle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plasma Device and Production of Tb-PAW
2.2. Bacterial Strains and Culture Conditions
2.3. Tb-PAW Treatment on Different Bacterial Strains
2.4. Application of BSA as a Protein Factor
2.5. Tb-PAW Storage Trials at Different Temperatures
2.6. Bacterial Enumeration
2.7. Statistical Analysis of the Data
3. Results and Discussion
3.1. Bactericidal Efficacy of Tb-PAW on Different Microorganisms
3.2. Tb-PAW Inactivation Ability of E. coli, F. necrophorum and P. levii under the Influence of Bovine Serum Albumin
3.3. Tb-PAW Inactivation of E. coli after Different Storage Times and Temperatures
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Read, D.H.; Walker, R.L. Papillomatous Digital Dermatitis (Footwarts) in California Dairy Cattle: Clinical and Gross Pathologic Findings. J. Vet. Diagn. Investig. 1998, 10, 67–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Refaai, W.; Van Aert, M.; Abd El-Aal, A.M.; Behery, A.E.; Opsomer, G. Infectious Diseases Causing Lameness in Cattle with a Main Emphasis on Digital Dermatitis (Mortellaro Disease). Livest. Sci. 2013, 156, 53–63. [Google Scholar] [CrossRef]
- Melendez, P.; Bartolome, J.; Archbald, L.F.; Donovan, A. The Association between Lameness, Ovarian Cysts and Fertility in Lactating Dairy Cows. Theriogenology 2003, 59, 927–937. [Google Scholar] [CrossRef]
- Warnick, L.D.; Janssen, D.; Guard, C.L.; Gröhn, Y.T. The Effect of Lameness on Milk Production in Dairy Cows. J. Dairy Sci. 2001, 84, 1988–1997. [Google Scholar] [CrossRef] [PubMed]
- Fiedler, A. Mortellarosche Krankheit—Therapie und Management der digitalen Dermatitis beim Rind. Veterinär Spieg. 2022, 32, 32–37. [Google Scholar] [CrossRef]
- Moe, K.K.; Yano, T.; Misumi, K.; Kubota, C.; Nibe, K.; Yamazaki, W.; Muguruma, M.; Misawa, N. Detection of Antibodies against Fusobacterium Necrophorum and Porphyromonas Levii-like Species in Dairy Cattle with Papillomatous Digital Dermatitis: Antibodies Responses in Cattle with PDD. Microbiol. Immunol. 2010, 54, 338–346. [Google Scholar] [CrossRef]
- Krull, A.C.; Shearer, J.K.; Gorden, P.J.; Cooper, V.L.; Phillips, G.J.; Plummer, P.J. Deep Sequencing Analysis Reveals Temporal Microbiota Changes Associated with Development of Bovine Digital Dermatitis. Infect. Immun. 2014, 82, 3359–3373. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, M.W.; Strube, M.L.; Isbrand, A.; Al-Medrasi, W.D.H.M.; Boye, M.; Jensen, T.K.; Klitgaard, K. Potential Bacterial Core Species Associated with Digital Dermatitis in Cattle Herds Identified by Molecular Profiling of Interdigital Skin Samples. Vet. Microbiol. 2016, 186, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Nordhoff, M.; Moter, A.; Schrank, K.; Wieler, L.H. High Prevalence of Treponemes in Bovine Digital Dermatitis-A Molecular Epidemiology. Vet. Microbiol. 2008, 131, 293–300. [Google Scholar] [CrossRef] [Green Version]
- Wilson-Welder, J.; Alt, D.; Nally, J. Digital Dermatitis in Cattle: Current Bacterial and Immunological Findings. Animals 2015, 5, 1114–1135. [Google Scholar] [CrossRef]
- Berry, S.L.; Read, D.H.; Famula, T.R.; Mongini, A.; Döpfer, D. Long-Term Observations on the Dynamics of Bovine Digital Dermatitis Lesions on a California Dairy after Topical Treatment with Lincomycin HCl. Vet. J. 2012, 193, 654–658. [Google Scholar] [CrossRef] [PubMed]
- Laven, R.A.; Hunt, H. Evaluation of Copper Sulphate, Formalin and Peracetic Acid in Footbaths for the Treatment of Digital Dermatitis in Cattle. Vet. Rec. 2002, 151, 144–146. [Google Scholar] [CrossRef] [PubMed]
- Laven, R.A.; Logue, D.N. Treatment Strategies for Digital Dermatitis for the UK. Vet. J. 2006, 171, 79–88. [Google Scholar] [CrossRef] [PubMed]
- El-Shafaey, E.-S.; Hamed, M.A.; Elfadl, E.A.; Gomaa, N.A.; Rizk, M.A. Phenytoin: A Promising Non-Antibiotic Drug for the Topical Treatment of Digital Dermatitis in Dairy Cows. Vet. World 2021, 14, 2907–2912. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, A.G.V.; Machado, V.S.; Caixeta, L.S.; Pereira, R.V.; Bicalho, R.C. Efficacy of Formalin, Copper Sulfate, and a Commercial Footbath Product in the Control of Digital Dermatitis. J. Dairy Sci. 2010, 93, 3628–3634. [Google Scholar] [CrossRef] [Green Version]
- Joshi, I.; Salvi, D.; Schaffner, D.W.; Karwe, M.V. Characterization of Microbial Inactivation Using Plasma-Activated Water and Plasma-Activated Acidified Buffer. J. Food Prot. 2018, 81, 1472–1480. [Google Scholar] [CrossRef]
- Traylor, M.J.; Pavlovich, M.J.; Karim, S.; Hait, P.; Sakiyama, Y.; Clark, D.S.; Graves, D.B. Long-Term Antibacterial Efficacy of Air Plasma-Activated Water. J. Phys. D Appl. Phys. 2011, 44, 472001. [Google Scholar] [CrossRef] [Green Version]
- Gan, L.; Duan, J.; Zhang, S.; Liu, X.; Poorun, D.; Liu, X.; Lu, X.; Duan, X.; Liu, D.; Chen, H. Cold Atmospheric Plasma Ameliorates Imiquimod-Induced Psoriasiform Dermatitis in Mice by Mediating Antiproliferative Effects. Free Radic. Res. 2019, 53, 269–280. [Google Scholar] [CrossRef]
- Kamgang-Youbi, G.; Herry, J.-M.; Meylheuc, T.; Brisset, J.-L.; Bellon-Fontaine, M.-N.; Doubla, A.; Naïtali, M. Microbial Inactivation Using Plasma-Activated Water Obtained by Gliding Electric Discharges. Lett. Appl. Microbiol. 2009, 48, 13–18. [Google Scholar] [CrossRef]
- Subramanian, P.S.G.; Jain, A.; Shivapuji, A.M.; Sundaresan, N.R.; Dasappa, S.; Rao, L. Plasma-activated Water from a Dielectric Barrier Discharge Plasma Source for the Selective Treatment of Cancer Cells. Plasma Process. Polym. 2020, 17, 1900260. [Google Scholar] [CrossRef]
- Xu, D.; Wang, S.; Li, B.; Qi, M.; Feng, R.; Li, Q.; Zhang, H.; Chen, H.; Kong, M.G. Effects of Plasma-Activated Water on Skin Wound Healing in Mice. Microorganisms 2020, 8, 1091. [Google Scholar] [CrossRef]
- ten Bosch, L.; Pfohl, K.; Avramidis, G.; Wieneke, S.; Viöl, W.; Karlovsky, P. Plasma-Based Degradation of Mycotoxins Produced by Fusarium, Aspergillus and Alternaria Species. Toxins 2017, 9, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khlyustova, A.; Labay, C.; Machala, Z.; Ginebra, M.-P.; Canal, C. Important Parameters in Plasma Jets for the Production of RONS in Liquids for Plasma Medicine: A Brief Review. Front. Chem. Sci. Eng. 2019, 13, 238–252. [Google Scholar] [CrossRef]
- Zhao, Y.-M.; Ojha, S.; Burgess, C.M.; Sun, D.-W.; Tiwari, B.K. Inactivation Efficacy and Mechanisms of Plasma Activated Water on Bacteria in Planktonic State. J. Appl. Microbiol. 2020, 129, 1248–1260. [Google Scholar] [CrossRef]
- Zhou, R.; Zhou, R.; Prasad, K.; Fang, Z.; Speight, R.; Bazaka, K.; Ostrikov, K. Cold Atmospheric Plasma Activated Water as a Prospective Disinfectant: The Crucial Role of Peroxynitrite. Green Chem. 2018, 20, 5276–5284. [Google Scholar] [CrossRef]
- Yusupov, M.; Bogaerts, A.; Huygh, S.; Snoeckx, R.; van Duin, A.C.T.; Neyts, E.C. Plasma-Induced Destruction of Bacterial Cell Wall Components: A Reactive Molecular Dynamics Simulation. J. Phys. Chem. C 2013, 117, 5993–5998. [Google Scholar] [CrossRef]
- Chen, H.; Bai, F.; Xiu, Z. Oxidative Stress Induced in Saccharomyces cerevisiae Exposed to Dielectric Barrier Discharge Plasma in Air at Atmospheric Pressure. IEEE Trans. Plasma Sci. 2010, 38, 1885–1891. [Google Scholar] [CrossRef]
- Tsoukou, E.; Delit, M.; Treint, L.; Bourke, P.; Boehm, D. Distinct Chemistries Define the Diverse Biological Effects of Plasma Activated Water Generated with Spark and Glow Plasma Discharges. Appl. Sci. 2021, 11, 1178. [Google Scholar] [CrossRef]
- Rothwell, J.G.; Alam, D.; Carter, D.A.; Soltani, B.; McConchie, R.; Zhou, R.; Cullen, P.J.; Mai-Prochnow, A. The Antimicrobial Efficacy of Plasma-Activated Water against Listeria and E. Coli Is Modulated by Reactor Design and Water Composition. J. Appl. Microbiol. 2022, 132, 2490–2500. [Google Scholar] [CrossRef]
- Vlad, I.E.; Martin, C.; Toth, A.R.; Papp, J.; Anghel, S.D. Bacterial Inhibition Effect of Plasma Activated Water. Rom. Rep. Phys. 2019, 71, 602. [Google Scholar]
- Xiang, Q.; Fan, L.; Li, Y.; Dong, S.; Li, K.; Bai, Y. A Review on Recent Advances in Plasma-Activated Water for Food Safety: Current Applications and Future Trends. Crit. Rev. Food Sci. Nutr. 2022, 62, 2250–2268. [Google Scholar] [CrossRef] [PubMed]
- Royintarat, T.; Seesuriyachan, P.; Boonyawan, D.; Choi, E.H.; Wattanutchariya, W. Mechanism and Optimization of Non-Thermal Plasma-Activated Water for Bacterial Inactivation by Underwater Plasma Jet and Delivery of Reactive Species Underwater by Cylindrical DBD Plasma. Curr. Appl. Phys. 2019, 19, 1006–1014. [Google Scholar] [CrossRef]
- Ursache, M.; Moraru, R.; Hnatiuc, E.; Nastase, V.; Mares, M. Comparative Assessment of the Relation between Energy Consumption and Bacterial Burden Reduction Using Plasma Activated Water. In Proceedings of the 2014 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), Bran, Romania, 22–24 May 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1036–1041. [Google Scholar]
- Li, Y.; Pan, J.; Zhang, Q.; Wang, J.; Zhang, J.; Fang, J. In Vitro Studies of the Antimicrobial Effect of Non-Thermal Plasma-Activated Water as a Novel Mouthwash. Eurpean J. Oral Sci. 2017, 125, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Laroussi, M.; Bekeschus, S.; Keidar, M.; Bogaerts, A.; Lu, X.; Hori, M.; Stapelmann, K.; Miller, V.; Reuter, S.; Laux, C.; et al. Low Temperature Plasma for Biology, Hygiene, and Medicine: Perspective and Roadmap. IEEE Trans. Radiat. Plasma Med. Sci. 2022, 64, 127–157. [Google Scholar] [CrossRef]
- Li, Y.; Nie, L.; Liu, D.; Kim, S.; Lu, X. Plasma-activated Chemical Solutions and Their Bactericidal Effects. Plasma Process. Polym. 2022, 19, 2100248. [Google Scholar] [CrossRef]
- Zhang, Q.; Liang, Y.; Feng, H.; Ma, R.; Tian, Y.; Zhang, J.; Fang, J. A Study of Oxidative Stress Induced by Non-Thermal Plasma-Activated Water for Bacterial Damage. Appl. Phys. Lett. 2013, 102, 203701. [Google Scholar] [CrossRef]
- Baik, K.Y.; Kim, Y.H.; Ryu, Y.H.; Kwon, H.S.; Park, G.; Uhm, H.S.; Choi, E.H. Feeding-Gas Effects of Plasma Jets on Escherichia Coli in Physiological. Plasma Process. Polym. 2013, 10, 235–242. [Google Scholar] [CrossRef]
- Zhang, Q.; Ma, R.; Tian, Y.; Su, B.; Wang, K.; Yu, S.; Zhang, J.; Fang, J. Sterilization Efficiency of a Novel Electrochemical Disinfectant against Staphylococcus aureus. Environ. Sci. Technol. 2016, 50, 3184–3192. [Google Scholar] [CrossRef]
- Xiang, Q.; Kang, C.; Zhao, D.; Niu, L.; Liu, X.; Bai, Y. Influence of Organic Matters on the Inactivation Efficacy of Plasma-Activated Water against E. coli O157:H7 and S. aureus. Food Control 2019, 99, 28–33. [Google Scholar] [CrossRef]
- Di Simplicio, P.; Cheeseman, K.H.; Slater, T.F. The Reactivity of the Sh Group of Bovine Serum Albumin with Free Radicals. Free Radic. Res. Commun. 1991, 14, 253–262. [Google Scholar] [CrossRef]
- Rowan, N.J.; Espie, S.; Harrower, J.; Anderson, J.G.; Marsili, L.; macGregor, S.J. Pulsed-Plasma Gas-Discharge Inactivation of Microbial Pathogens in Chilled Poultry Wash Water. J. Food Prot. 2007, 70, 2805–2810. [Google Scholar] [CrossRef] [PubMed]
- Gurol, C.; Ekinci, F.Y.; Aslan, N.; Korachi, M. Low Temperature Plasma for Decontamination of E. coli in Milk. Int. J. Food Microbiol. 2012, 157, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Tian, Y.; Li, Y.; Ma, R.; Zhang, Q.; Zhang, J.; Fang, J. Bactericidal Effects against S. Aureus and Physicochemical Properties of Plasma Activated Water Stored at Different Temperatures. Sci. Rep. 2016, 6, 28505. [Google Scholar] [CrossRef] [PubMed]
Storage (hours) | ||||
---|---|---|---|---|
Treatment | 4 | 8 | 12 | 24 |
7 °C treatment temperature | ||||
Control 1 | 4.93 ± 0.81 A | 5.02 ± 0.74 A | 5.71 ± 0.59 A | 5.05 ± 0.63 A |
Tb-PAW 2 | 1.23 ± 0.50 B | 2.40 ± 0.39 B | 2.40 ± 0.80 B | 2.43 ± 0.77 B,x |
21 °C treatment temperature | ||||
Control | 5.31 ± 0.17 A | 5.56 ± 0.58 A | 5.71 ± 0.47 A | 5.27 ± 0.49 A |
Tb-PAW | 1.14 ± 0.42 B | 1.18 ± 0.83 B | 2.94 ± 0.57 B | 2.09 ± 0.88 B, x |
30 °C treatment temperature | ||||
Control | 5.65 ± 0.22 A | 6.03 ± 0.28 A | 5.95 ± 0.32 A | 5.76 ± 0.30 A |
Tb-PAW | 1.16 ± 0.80 a,B | 0.96 ± 0.45 a,B | 2.25 ± 0.42 a,B | 5.03 ± 0.22 b,B,y |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Große-Peclum, V.; Siekmann, L.; Krischek, C.; Avramidis, G.; ten Bosch, L.; Harms, M.; Ochs, C.; Ortmann, R.; Hoedemaker, M.; Ahlfeld, B.; et al. An In Vitro Model Using TRIS-Buffered Plasma-Activated Water to Reduce Pathogenic Microorganisms Involved in Digital Dermatitis Infection in Cattle. Appl. Sci. 2022, 12, 12325. https://doi.org/10.3390/app122312325
Große-Peclum V, Siekmann L, Krischek C, Avramidis G, ten Bosch L, Harms M, Ochs C, Ortmann R, Hoedemaker M, Ahlfeld B, et al. An In Vitro Model Using TRIS-Buffered Plasma-Activated Water to Reduce Pathogenic Microorganisms Involved in Digital Dermatitis Infection in Cattle. Applied Sciences. 2022; 12(23):12325. https://doi.org/10.3390/app122312325
Chicago/Turabian StyleGroße-Peclum, Vanessa, Lisa Siekmann, Carsten Krischek, Georg Avramidis, Lars ten Bosch, Marcus Harms, Christian Ochs, Rinat Ortmann, Martina Hoedemaker, Birte Ahlfeld, and et al. 2022. "An In Vitro Model Using TRIS-Buffered Plasma-Activated Water to Reduce Pathogenic Microorganisms Involved in Digital Dermatitis Infection in Cattle" Applied Sciences 12, no. 23: 12325. https://doi.org/10.3390/app122312325
APA StyleGroße-Peclum, V., Siekmann, L., Krischek, C., Avramidis, G., ten Bosch, L., Harms, M., Ochs, C., Ortmann, R., Hoedemaker, M., Ahlfeld, B., Roolfs, K. A., Viöl, W., & Plötz, M. (2022). An In Vitro Model Using TRIS-Buffered Plasma-Activated Water to Reduce Pathogenic Microorganisms Involved in Digital Dermatitis Infection in Cattle. Applied Sciences, 12(23), 12325. https://doi.org/10.3390/app122312325