Study of Social Presence While Interacting in Metaverse with an Augmented Avatar during Autonomous Driving
Abstract
:1. Introduction
2. Related Work
2.1. Collaboration in Metaverse
2.2. Avatar Representation
2.3. Metaverse for Autonomous Driving
2.4. Social Presence
3. Materials and Methods
3.1. Experimental Setup
3.2. Participants and Procedure
4. Results
4.1. Baseline Scenario
4.2. Augmented Reality Scenario
4.3. Statistical Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Su, Z.; Zhang, N.; Xing, R.; Liu, D.; Luan, T.H.; Shen, X. A survey on metaverse: Fundamentals, security, and privacy. IEEE Commun. Surv. Tutor. 2022. [Google Scholar] [CrossRef]
- Jin, L.; Guo, B.; Jiang, Y.; Wang, F.; Xie, X.; Gao, M. Study on the impact degrees of several driving behaviors when driving while performing secondary tasks. IEEE Access 2018, 6, 65772–65782. [Google Scholar] [CrossRef]
- Ebadi, Y.; Fisher, D.L.; Roberts, S.C. Impact of cognitive distractions on drivers’ hazard anticipation behavior in complex scenarios. Transp. Res. Rec. 2019, 2673, 440–451. [Google Scholar] [CrossRef]
- Ranney, T.A. Models of driving behavior: A review of their evolution. Accid. Anal. Prev. 1994, 26, 733–750. [Google Scholar] [CrossRef]
- Luke, R.; Heyns, G.J. Reducing risky driver behaviour through the implementation of a driver risk management system. J. Transp. Supply Chain. Manag. 2014, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Boer, E.R.; Hoedemaeker, M. Modeling driver behavior with different degrees of automation: A hierarchical decision framework of interacting mental models. In Proceedings of the 17th European Annual Conference on Human Decision Making and Manual Control, Valenciennes, France, 14–16 December 1998; pp. 63–72. [Google Scholar]
- International, S. Available online: https://www.sae.org/standards/content/j3016_202104/ (accessed on 21 October 2022).
- Naujoks, F.; Forster, Y.; Wiedemann, K.; Neukum, A. Improving usefulness of automated driving by lowering primary task interference through HMI design. J. Adv. Transp. 2017, 2017, 6105087. [Google Scholar] [CrossRef] [Green Version]
- Technology, N. Available online: https://www.nissan-global.com/EN/TECHNOLOGY/OVERVIEW/i2v.html (accessed on 21 October 2022).
- Biocca, F.; Harms, C.; Burgoon, J.K. Toward a more robust theory and measure of social presence: Review and suggested criteria. Presence Teleoper. Virtual Environ. 2003, 12, 456–480. [Google Scholar] [CrossRef]
- Jo, D.; Kim, K.-H.; Kim, G.J. Effects of avatar and background types on users’ co-presence and trust for mixed reality-based teleconference systems. In Proceedings of the 30th Conference on Computer Animation and Social Agents, Seoul, Republic of Korea, 22–24 May 2017; pp. 27–36. [Google Scholar]
- Yoon, B.; Kim, H.-i.; Lee, G.A.; Billinghurst, M.; Woo, W. The effect of avatar appearance on social presence in an augmented reality remote collaboration. In Proceedings of the 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Osaka, Japan, 23–27 March 2019; pp. 547–556. [Google Scholar]
- Williams, K.J.; Peters, J.C.; Breazeal, C.L. Towards leveraging the driver’s mobile device for an intelligent, sociable in-car robotic assistant. In Proceedings of the 2013 IEEE intelligent vehicles symposium (IV), Gold Coast, Australia, 23–26 June 2013; pp. 369–376. [Google Scholar]
- Wang, M.; Lee, S.C.; Kamalesh Sanghavi, H.; Eskew, M.; Zhou, B.; Jeon, M. In-vehicle intelligent agents in fully autonomous driving: The effects of speech style and embodiment together and separately. In Proceedings of the 13th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, Leeds, UK, 9–14 September 2021; pp. 247–254. [Google Scholar]
- Medeiros, D.; McGill, M.; Ng, A.; McDermid, R.; Pantidi, N.; Williamson, J.; Brewster, S. From Shielding to Avoidance: Passenger Augmented Reality and the Layout of Virtual Displays for Productivity in Shared Transit. IEEE Trans. Vis. Comput. Graph. 2022, 28, 3640–3650. [Google Scholar] [CrossRef]
- Billinghurst, M.; Kato, H. Collaborative mixed reality. In Proceedings of the First International Symposium on Mixed Reality, Yokohama, Japan, 9–11 March 1999; pp. 261–284. [Google Scholar]
- Cadet, L.B.; Chainay, H. Memory of virtual experiences: Role of immersion, emotion and sense of presence. Int. J. Hum.-Comput. Stud. 2020, 144, 102506. [Google Scholar] [CrossRef]
- Blade, V. Available online: https://www.vuzix.com/products/vuzix-blade-2-smart-glasses (accessed on 21 October 2022).
- Leap, M. Available online: https://www.magicleap.com/magic-leap-2 (accessed on 21 October 2022).
- Xi, N.; Chen, J.; Gama, F.; Riar, M.; Hamari, J. The challenges of entering the metaverse: An experiment on the effect of extended reality on workload. Inf. Syst. Front. 2022, 1–22. [Google Scholar] [CrossRef]
- Popescu, G.H.; Ciurlău, C.F.; Stan, C.I. Virtual Workplaces in the Metaverse: Immersive Remote Collaboration Tools, Behavioral Predictive Analytics, and Extended Reality Technologies. Psychosociol. Issues Hum. Resour. Manag. 2022, 10, 21–34. [Google Scholar]
- Cárdenas-Robledo, L.A.; Hernández-Uribe, Ó.; Reta, C.; Cantoral-Ceballos, J.A. Extended reality applications in industry 4.0.—A systematic literature review. Telemat. Inform. 2022, 73, 101863. [Google Scholar] [CrossRef]
- Vasarainen, M.; Paavola, S.; Vetoshkina, L. A systematic literature review on extended reality: Virtual, augmented and mixed reality in working life. Int. J. Virtual Real. 2021, 21, 1–28. [Google Scholar] [CrossRef]
- Dai, F.; Olorunfemi, A.; Peng, W.; Cao, D.; Luo, X. Can mixed reality enhance safety communication on construction sites? An industry perspective. Saf. Sci. 2021, 133, 105009. [Google Scholar] [CrossRef]
- Cheng, J.C.; Chen, K.; Chen, W. State-of-the-art review on mixed reality applications in the AECO industry. J. Constr. Eng. Manag. 2020, 146, 03119009. [Google Scholar] [CrossRef]
- Stothard, P.; Squelch, A.; Stone, R.; Van Wyk, E. Towards sustainable mixed reality simulation for the mining industry. Min. Technol. 2019, 128, 246–254. [Google Scholar] [CrossRef]
- Chai, J.J.; O’Sullivan, C.; Gowen, A.A.; Rooney, B.; Xu, J.-L. Augmented/mixed reality technologies for food: A review. Trends Food Sci. Technol. 2022, 124, 182–194. [Google Scholar] [CrossRef]
- Gsaxner, C.; Li, J.; Pepe, A.; Jin, Y.; Kleesiek, J.; Schmalstieg, D.; Egger, J. The HoloLens in Medicine: A systematic Review and Taxonomy. arXiv 2022, arXiv:2209.03245. [Google Scholar]
- Fernandez, P. Facebook, Meta, the metaverse and libraries. Libr. Hi Tech News 2022, 39, 1–5. [Google Scholar] [CrossRef]
- Kolesnichenko, A.; McVeigh-Schultz, J.; Isbister, K. Understanding emerging design practices for avatar systems in the commercial social vr ecology. In Proceedings of the 2019 on Designing Interactive Systems Conference, San Diego, CA, USA, 23–28 June 2019; pp. 241–252. [Google Scholar]
- Avatars, U. Available online: https://unionavatars.com/ (accessed on 9 November 2022).
- Kim, J.I.; Ha, T.; Woo, W.; Shi, C.-K. Enhancing social presence in augmented reality-based telecommunication system. In Proceedings of the International Conference on Virtual, Augmented and Mixed Reality, Las Vegas, NV, USA, 24 July 2013; pp. 359–367. [Google Scholar]
- Pejsa, T.; Kantor, J.; Benko, H.; Ofek, E.; Wilson, A. Room2room: Enabling life-size telepresence in a projected augmented reality environment. In Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing, San Francisco, CA, USA, 27 February–2 March 2016; pp. 1716–1725. [Google Scholar]
- Orts-Escolano, S.; Rhemann, C.; Fanello, S.; Chang, W.; Kowdle, A.; Degtyarev, Y.; Kim, D.; Davidson, P.L.; Khamis, S.; Dou, M. Holoportation: Virtual 3d teleportation in real-time. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology, Tokyo, Japan, 16–19 October 2016; pp. 741–754. [Google Scholar]
- Concept, H.M. Available online: https://www.hyundai.news/eu/articles/press-releases/hyundai-shares-vision-of-new-metamobility-concept-through-robotics-and-Metaverse-at-CES-2022.html (accessed on 21 October 2022).
- Group, B. Available online: https://www.press.bmwgroup.com/global/article/detail/T0329569EN/bmw-group-and-nvidia-take-virtual-factory-planning-to-the-next-level?language=en (accessed on 21 October 2022).
- Adventure, H.M. Available online: https://www.hyundai.com/worldwide/en/company/newsroom/hyundai-motor-vitalizes-future-mobility-in-roblox-Metaverse-space%252C-hyundai-mobility-adventure-0000016713 (accessed on 21 October 2022).
- Driver, O. Available online: https://www.oxbotica.com/insight/oxbotica-partners-with-nevs-to-reshape-the-future-of-urban-mobility-with-fleet-of-shared-self-driving-all-electric-vehicles/ (accessed on 21 October 2022).
- COWI. The Oslo Study—How Autonomous Cars May Change Transport in Cities; COWI: Lyngby, Denmark, 2019; Volume 79. [Google Scholar]
- Richter, M.A.; Hagenmaier, M.; Bandte, O.; Parida, V.; Wincent, J. Smart cities, urban mobility and autonomous vehicles: How different cities needs different sustainable investment strategies. Technol. Forecast. Soc. Chang. 2022, 184, 121857. [Google Scholar] [CrossRef]
- Allam, Z.; Sharifi, A.; Bibri, S.E.; Jones, D.S.; Krogstie, J. The metaverse as a virtual form of smart cities: Opportunities and challenges for environmental, economic, and social sustainability in urban futures. Smart Cities 2022, 5, 771–801. [Google Scholar] [CrossRef]
- Pamucar, D.; Deveci, M.; Gokasar, I.; Tavana, M.; Köppen, M. A metaverse assessment model for sustainable transportation using ordinal priority approach and Aczel-Alsina norms. Technol. Forecast. Soc. Chang. 2022, 182, 121778. [Google Scholar] [CrossRef]
- Soiné, A.; Flöck, A.N.; Walla, P. Electroencephalography (EEG) Reveals Increased Frontal Activity in Social Presence. Brain Sci. 2021, 11, 731. [Google Scholar] [CrossRef] [PubMed]
- Cui, G.; Lockee, B.B.; Meng, C. Building modern online social presence: A review of social presence theory and its instructional design implications for future trends. Educ. Inf. Technol. 2012, 18, 661–685. [Google Scholar] [CrossRef]
- Slater, M.; Wilbur, S. A Framework for Immersive Virtual Environments (FIVE): Speculations on the Role of Presence in Virtual Environments. Presence Teleoper. Virtual Environ. 1997, 6, 603–616. [Google Scholar] [CrossRef]
- Biocca, F. The Cyborg’s Dilemma: Progressive Embodiment in Virtual Environments [1]. J. Comput.-Mediat. Commun. 1997, 3, JCMC324. [Google Scholar] [CrossRef]
- Kreijns, K.; Xu, K.; Weidlich, J. Social presence: Conceptualization and measurement. Educ. Psychol. Rev. 2021, 34, 139–170. [Google Scholar] [CrossRef] [PubMed]
- Lombard, M.; Ditton, T. At the heart of it all: The concept of presence. J. Comput.-Mediat. Commun. 1997, 3, JCMC321. [Google Scholar] [CrossRef]
- Short, J.; Williams, E.; Christie, B.A. The Social Psychology of Telecommunications; Wiley & Sons: Toronto, ON, Canada, 1976. [Google Scholar]
- Oh, C.S.; Bailenson, J.N.; Welch, G.F. A Systematic Review of Social Presence: Definition, Antecedents, and Implications. Front. Robot. AI 2018, 5, 114. [Google Scholar] [CrossRef] [Green Version]
- Skalski, P.; Tamborini, R. The role of social presence in interactive agent-based persuasion. Media Psychol. 2007, 10, 385–413. [Google Scholar] [CrossRef]
- Zuckerman, M.; DePaulo, B.M.; Rosenthal, R. Verbal and nonverbal communication of deception. In Advances in Experimental Social Psychology; Elsevier: Amsterdam, The Netherlands, 1981; Volume 14, pp. 1–59. [Google Scholar]
- Hulme, K.; Kasprzak, E.; English, K.; Moore-Russo, D.; Lewis, K. Experiential learning in vehicle dynamics education via motion simulation and interactive gaming. Int. J. Comput. Games Technol. 2009, 2009, 952524. [Google Scholar] [CrossRef] [Green Version]
- Stewart, D. A platform with six degrees of freedom. Proc. Inst. Mech. Eng. 1965, 180, 371–386. [Google Scholar] [CrossRef]
- Reymond, G.; Kemeny, A. Motion cueing in the Renault driving simulator. Veh. Syst. Dyn. 2000, 34, 249–259. [Google Scholar] [CrossRef]
- Antonya, C.; Irimia, C.; Grovu, M.; Husar, C.; Ruba, M. Co-simulation environment for the analysis of the driving simulator’s actuation. In Proceedings of the 2019 7th International Conference on Control, Mechatronics and Automation (ICCMA), Delft, The Netherlands, 6–8 November 2019; pp. 315–321. [Google Scholar]
- Dosovitskiy, A.; Ros, G.; Codevilla, F.; Lopez, A.; Koltun, V. CARLA: An open urban driving simulator. In Proceedings of the Conference on Robot Learning, Mountain View, CA, USA, 13–15 November 2017; pp. 1–16. [Google Scholar]
- Mesh, M. Available online: https://learn.microsoft.com/en-us/mesh/overview (accessed on 21 October 2022).
- Harms, C.; Biocca, F. Internal consistency and reliability of the networked minds measure of social presence. In Proceedings of the Seventh Annual International Workshop: Presence, Valencia, Spain, 13–15 October 2004. [Google Scholar]
- Hair, J.F.; Anderson, R.; Tatham, R.; Black, W. Factor analysis. Multivariate data analysis. NJ Prentice-Hall 1998, 3, 98–99. [Google Scholar]
- Eurostat. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20201021-2 (accessed on 21 October 2022).
- Giménez-Nadal, J.I.; Molina, J.A.; Velilla, J. Trends in commuting time of European workers: A cross-country analysis. Transp. Policy 2022, 116, 327–342. [Google Scholar] [CrossRef]
- Teodorovicz, T.; Kun, A.L.; Sadun, R.; Shaer, O. Multitasking while driving: A time use study of commuting knowledge workers to assess current and future uses. Int. J. Hum.-Comput. Stud. 2022, 162, 102789. [Google Scholar] [CrossRef]
- Kim, K.; Schubert, R.; Hochreiter, J.; Bruder, G.; Welch, G. Blowing in the wind: Increasing social presence with a virtual human via environmental airflow interaction in mixed reality. Comput. Graph. 2019, 83, 23–32. [Google Scholar] [CrossRef]
Scenario | CoP | Att | Msg | Aff | Emo | Behv |
---|---|---|---|---|---|---|
Tablet * | 6.103 ± 0.683 | 5.062 ± 0.587 | 5.890 ± 0.568 | 4.680 ± 0.680 | 4.993 ± 0.680 | 5.022 ± 0.709 |
Mixed reality * | 6.563 ± 0.370 | 4.897 ± 0.599 | 6.189 ± 0.511 | 4.862 ± 0.679 | 4.430 ± 0.830 | 5.917 ± 0.727 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voinea, G.D.; Gîrbacia, F.; Postelnicu, C.C.; Duguleana, M.; Antonya, C.; Soica, A.; Stănescu, R.-C. Study of Social Presence While Interacting in Metaverse with an Augmented Avatar during Autonomous Driving. Appl. Sci. 2022, 12, 11804. https://doi.org/10.3390/app122211804
Voinea GD, Gîrbacia F, Postelnicu CC, Duguleana M, Antonya C, Soica A, Stănescu R-C. Study of Social Presence While Interacting in Metaverse with an Augmented Avatar during Autonomous Driving. Applied Sciences. 2022; 12(22):11804. https://doi.org/10.3390/app122211804
Chicago/Turabian StyleVoinea, Gheorghe Daniel, Florin Gîrbacia, Cristian Cezar Postelnicu, Mihai Duguleana, Csaba Antonya, Adrian Soica, and Ruxandra-Cristina Stănescu. 2022. "Study of Social Presence While Interacting in Metaverse with an Augmented Avatar during Autonomous Driving" Applied Sciences 12, no. 22: 11804. https://doi.org/10.3390/app122211804
APA StyleVoinea, G. D., Gîrbacia, F., Postelnicu, C. C., Duguleana, M., Antonya, C., Soica, A., & Stănescu, R. -C. (2022). Study of Social Presence While Interacting in Metaverse with an Augmented Avatar during Autonomous Driving. Applied Sciences, 12(22), 11804. https://doi.org/10.3390/app122211804