Experimental Observation of the Suppression of the Dephasing in a Floquet Engineering Optical Lattice Clock
Abstract
:1. Introduction
2. Experimental Apparatus
3. Experimental Observation of Rabi Spectroscopy and Dephasing
3.1. Sideband-Resolved Spectroscopy and High-Resolution Rabi Spectroscopy
3.2. Suppression of the Dephasing of the Rabi Flopping Process
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- McGrew, W.F.; Zhang, X.; Fasano, R.J.; Schäffer, S.A.; Beloy, K.; Nicolodi, D.; Brown, R.C.; Hinkley, N.; Milani, G.; Schioppo, M.; et al. Atomic clock performance enabling geodesy below the centimetre level. Nature 2018, 564, 87–90. [Google Scholar] [CrossRef] [Green Version]
- Bothwell, T.; Kedar, D.; Oelker, E.; Robinson, J.M.; Bromley, S.L.; Tew, W.L.; Ye, J.; Kennedy, C.J. JILA SrI optical lattice clock with uncertainty of 2.0 × 10−18. Metrologia 2019, 56, 065004. [Google Scholar] [CrossRef] [Green Version]
- Riehle, F.; Gill, P.; Arias, F.; Robertsson, L. The CIPM list of recommended frequency standard values: Guidelines and procedures. Metrologia 2018, 55, 188. [Google Scholar] [CrossRef]
- Deschênes, J.; Sinclair, L.C.; Giorgetta, F.R.; Swann, W.C.; Baumann, E.; Bergeron, H.; Cermak, M.A.; Coddington, I.; Newbury, N.R. Synchronization of Distant Optical Clocks at the Femtosecond Level. Phys. Rev. X 2016, 6, 021016. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Liu, H.; Lu, X.T.; Chang, H. Analysis of Narrow-Line Laser Cooling and Trapping of Sr Atoms in Microgravity Environments. Appl. Sci. 2020, 10, 4928. [Google Scholar] [CrossRef]
- Origlia, S.; Pramod, M.S.; Schiller, S.; Singh, Y.; Bongs, K.; Schwarz, R.; Al-Masoudi, A.; Dörscher, S.; Herbers, S.; Häfner, S.; et al. Towards an optical clock for space: Compact, high-performance optical lattice clock based on bosonic atoms. Phys. Rev. A 2018, 98, 053443. [Google Scholar] [CrossRef]
- Takamoto, M.; Ushijima, I.; Ohmae, N.; Takamoto, M.; Ushijima, I.; Ohmae, N.; Yahagi, T.; Kokado, K.; Shinkai, H.; Katori, H. Test of general relativity by a pair of transportable optical lattice clocks. Nat. Photon. 2020, 14, 411–415. [Google Scholar] [CrossRef]
- Eckardt, A.; Weiss, C.; Holthaus, M. Superfluid-insulator transition in a periodically driven optical lattice. Phys. Rev. Lett. 2005, 95, 260404. [Google Scholar] [CrossRef] [Green Version]
- Eckardt, A. Colloquium: Atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys. 2017, 89, 011004. [Google Scholar] [CrossRef] [Green Version]
- Yin, M.J.; Wang, T.; Lu, X.T.; Li, T.; Wang, Y.B.; Zhang, X.F.; Li, W.D.; Smerzi, A.; Chang, H. Rabi Spectroscopy and Sensitivity of a Floquet Engineered Optical Lattice Clock. Chin. Phys. Lett. 2021, 38, 073201. [Google Scholar] [CrossRef]
- Lu, X.T.; Wang, T.; Li, T.; Zhou, C.H.; Yin, M.J.; Wang, Y.B.; Zhang, X.F.; Chang, H. Doubly Modulated Optical Lattice Clock: Interference and Topology. Phys. Rev. Lett. 2021, 127, 033601. [Google Scholar] [CrossRef] [PubMed]
- Yin, M.J.; Lu, X.T.; Li, T.; Xia, J.J.; Wang, T.; Zhang, X.F.; Chang, H. Floquet Engineering Hz-Level Rabi Spectra in Shallow Optical Lattice Clock. Phys. Rev. Lett. 2022, 128, 073603. [Google Scholar] [CrossRef] [PubMed]
- Blatt, S.; Thomsen, J.W.; Campbell, G.K.; Ludlow, A.D.; Swallows, M.D.; Martin, M.J.; Boyd, M.M.; Ye, J. Rabi Spectroscopy and Excitation Inhomogeneity in a 1D Optical Lattice Clock. Phys. Rev. A 2009, 80, 052703. [Google Scholar] [CrossRef]
- Al-Masoudi, A.; Dorscher, S.; Hafner, S.; Sterr, U.; Lisdat, C. Noise and instability of an optical lattice clock. Phys. Rev. A 2015, 92, 063814. [Google Scholar] [CrossRef] [Green Version]
- Bishof, M.; Martin, M.J.; Swallows, M.D.; Benko, C.; Lin, Y.; Qu’em’ener, G.; Rey, A.M.; Ye, J. Inelastic collisions and density-dependent excitation suppression in a 87Sr optical lattice clock. Phys. Rev. A 2011, 84, 052716. [Google Scholar] [CrossRef] [Green Version]
- Gorshkov, A.V.; Kraus, C.V.; Martin, M.J.; Bishof, M.; Swallows, M.D.; Zhang, X.; Benko, C.; Ye, J.; Lemke, N.D.; Ludlow, A.D. Probing many-body interactions in an optical lattice clock. Ann. Phys. 2014, 340, 311–351. [Google Scholar]
- Campbell, S.L.; Hutson, R.B.; Marti, G.E.; Goban, A.; Darkwah, O.N.; McNally, R.L.; Sonderhouse, L.; Robinson, J.M.; Zhang, W.; Bloom, B.J.; et al. A Fermi-degenerate three-dimensional optical lattice clock. Science 2017, 358, 6359. [Google Scholar] [CrossRef] [Green Version]
- Madjarov, I.S.; Alexandre, C.; Shaw, A.L.; Covey, J.P.; Schkolnik, V.; Yoon, T.H.; Williams, J.R.; Endres, M. An Atomic-Array Optical Clock with Single-Atom Readout. Phys. Rev. X 2019, 9, 041052. [Google Scholar] [CrossRef] [Green Version]
- Bloom, B.J.; Nicholson, T.L.; Williams, J.R.; Campbell, S.L.; Bishof, M.; Zhang, X.; Zhang, W.; Bromley, S.L.; Ye, J. An optical lattice clock with accuracy and stability at the 10−18 level. Nature 2014, 506, 71–75. [Google Scholar] [CrossRef] [Green Version]
- Bayat, A.; Omar, Y. Measurement-assisted quantum communication in spin channels with dephasing. New J. Phys. 2015, 17, 103041. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.J.; Zheng, S.B.; Wang, J.W.; Song, C.; Zhang, P.F.; Li, K.M.; Liu, W.X.; Deng, H.; Huang, K.Q.; Zheng, D.G.; et al. Dephasing-Insensitive Quantum Information Storage and Processing with Superconducting Qubits. Phys. Rev. Lett. 2018, 121, 130501. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.B.; Yin, M.J.; Ren, J.; Xu, Q.F.; Lu, B.Q.; Han, J.X.; Guo, Y.; Chang, H. Strontium optical lattice clock at the National Time Service Center. Chin. Phys. B 2018, 27, 023701. [Google Scholar] [CrossRef]
- Wang, Y.B.; Lu, X.T.; Lu, B.Q.; Kong, D.H.; Chang, H. Recent Advances Concerning the 87Sr Optical Lattice Clock at the National Time Service Center. Appl. Sci. 2018, 8, 2194. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.T.; Yin, M.J.; Li, T.; Wang, Y.B.; Chang, H. An Evaluation of the Zeeman Shift of the 87Sr Optical Lattice Clock at the National Time Service Center. Appl. Sci. 2020, 10, 1440. [Google Scholar] [CrossRef] [Green Version]
- Falke, S.; Lemke, N.D.; Grebing, C.; Lipphardt, B.; Weyers, S.; Gerginov, V.; Huntemann, N.; Hagemann, C.; Al-Masoudi, A.; Häfner, S.; et al. A strontium lattice clock with 3 × 10−17 inaccuracy and its frequency. New J. Phys. 2014, 16, 073023. [Google Scholar] [CrossRef]
- Nagourney, W.; Sandberg, J.; Dehmelt, H. Shelved optical electron amplifier: Observation of quantum jumps. Phys. Rev. Lett. 1986, 56, 2797. [Google Scholar] [CrossRef]
- Lu, X.T.; Xia, J.J.; Lu, B.Q.; Wang, Y.B.; Wang, T.; Chang, H. Determining the atom number from detection noise in a one-dimensional optical lattice clock. Appl. Phys. Lett. 2022, 120, 151104. [Google Scholar] [CrossRef]
- Martin, M.J.; Bishof, M.; Swallows, M.D.; Zhang, X.; Benko, C.; von-Stecher, J.; Gorshkov, A.V.; Rey, A.M.; Ye, J. A quantum many-body spin system in an optical lattice clock. Science 2013, 9, 6146. [Google Scholar] [CrossRef] [Green Version]
- Giovannetti, V.; Lloyd, S.; Maccone, L. Advances in quantum metrology. Nat. Photon. 2011, 5, 222–229. [Google Scholar] [CrossRef] [Green Version]
- Albash, T.; Lidar, D.A. Adiabatic quantum computation. Rev. Mod. Phys. 2018, 90, 015002. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, F.; Lu, X.; Zhou, C.; Chang, H. Experimental Observation of the Suppression of the Dephasing in a Floquet Engineering Optical Lattice Clock. Appl. Sci. 2022, 12, 11618. https://doi.org/10.3390/app122211618
Guo F, Lu X, Zhou C, Chang H. Experimental Observation of the Suppression of the Dephasing in a Floquet Engineering Optical Lattice Clock. Applied Sciences. 2022; 12(22):11618. https://doi.org/10.3390/app122211618
Chicago/Turabian StyleGuo, Feng, Xiaotong Lu, Chihua Zhou, and Hong Chang. 2022. "Experimental Observation of the Suppression of the Dephasing in a Floquet Engineering Optical Lattice Clock" Applied Sciences 12, no. 22: 11618. https://doi.org/10.3390/app122211618
APA StyleGuo, F., Lu, X., Zhou, C., & Chang, H. (2022). Experimental Observation of the Suppression of the Dephasing in a Floquet Engineering Optical Lattice Clock. Applied Sciences, 12(22), 11618. https://doi.org/10.3390/app122211618