Bacteria in Soil: Promising Bioremediation Agents in Arid and Semi-Arid Environments for Cereal Growth Enhancement
Abstract
:1. Introduction
2. Main Aspects of Low Soil Fertility
3. Plant Growth-Promoting Rhizobacteria, A Potential Approach for Bioremediation
4. Plant Growth-Promoting Rhizobacteria Implication in Induced Systemic Tolerance and Induced Systemic Resistance
5. Plant Growth-Promoting Metabolites for Soil Remediation and Crop Improvement
5.1. Bacterial Siderophores in Soil
5.2. Plant Ethylene Balancing via Bacterial ACC Deaminase
5.3. Phosphate Solubilization
5.4. Bacterial Phytohormones
- a.
- Auxins
- b.
- Gibberellins
- c.
- Cytokinins
- d.
- Abscisic acid
5.5. Bacterial Nitogen Recycling for Soil Maintenance and Crop Improvement
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations Department of Economic and Social Affairs, Population Division. World Population Prospects: Highlights; ST/ESA/SER.A/423; United Nations Secretariat: New York, NY, USA, 2019. [Google Scholar]
- Waughray, D. Water Security: The Water-Food-Energy-Climate Nexus: The World Economic Forum Water Initiative; Island Press: Washington, DC, USA, 2011. [Google Scholar]
- Golla, B. Agricultural production system in arid and semi-arid regions. J. Agric. Sci. Food Technol. 2021, 7, 234–244. [Google Scholar]
- Tabari, H.; Aghajanloo, M.B. Temporal pattern of aridity index in Iran with considering precipitation and evapotranspiration trends. Int. J. Climatol. 2013, 33, 396–409. [Google Scholar] [CrossRef]
- Zhang, X.; Aguilar, E.; Sensoy, S.; Melkonyan, H.; Tagiyeva, U.; Ahmed, N.; Kutaladze, N.; Rahimzadeh, F.; Taghipour, A.; Hantosh, T.H.; et al. Trends in Middle East climate extreme indices from 1950 to 2003. J. Geophys. Res. Atmos. 2005, 110, 1–12. [Google Scholar] [CrossRef]
- Andrighetti, M.; Zardi, D.; Franceschi, M. History and analysis of the temperature series of Verona (1769–2006). Meteorol. Atmos. Phys. 2009, 103, 267–277. [Google Scholar] [CrossRef]
- Tabari, H.; Talaee, P.H. Recent trends of mean maximum and minimum air temperatures in the western half of Iran. Meteorol. Atmos. Phys. 2011, 111, 121–131. [Google Scholar] [CrossRef]
- Paltineanu, C.; Mihailescu, I.F.; Seceleanu, I.; Dragota, C.; Vasenciuc, F. Using aridity indices to describe some climate and soil features in Eastern Europe: A Romanian case study. Theor. Appl. Climatol. 2007, 90, 263–274. [Google Scholar] [CrossRef]
- Seager, R.; Ting, M.; Held, I.; Kushnir, Y.; Lu, J.; Vecchi, G.; Huang, H.P.; Harnik, N.; Leetmaa, A.; Lau, N.C.; et al. Model projections of an imminent transition to a more arid climate in southwestern North America. Science 2007, 316, 1181–1184. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Giorgi, F. Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model. Glob. Planet. Chang. 2008, 62, 195–209. [Google Scholar] [CrossRef]
- Le Houérou, H.N. Climate change, drought and desertification. J. Arid Environ. 1996, 34, 133–185. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.M. Instinctive plant tolerance towards abiotic stresses in arid regions. In Artificial Photosynthesis; Najafpour, M., Ed.; InTechOpen: Rijeka, Croatia, 2012; pp. 219–238. [Google Scholar]
- Tak, H.I.; Ahmad, F.; Babalola, O.O. Advances in the application of Plant Growth-Promoting Rhizobacteria in phytoremediation of heavy metals. In Reviews of Environmental Contamination and Toxicology; Whitacre, D.M., Ed.; Springer: New York, NY, USA, 2013; pp. 33–52. [Google Scholar]
- Maestre, F.T.; Delgado-Baquerizo, M.; Jeffries, T.C.; Eldridge, D.J.; Ochoa, V.; Gozalo, B.; Quero, J.L.; García-Gómez, M.; Gallardo, A.; Ulrich, W.; et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc. Natl. Acad. Sci. USA 2015, 112, 15684–15689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rai, A.; Nabti, E. Plant Growth-Promoting Bacteria: Importance in Vegetable Production. In Microbial Strategies for Vegetable Production; Zaidi, A., Khan, M.S., Eds.; Springer: Cham, Switzerland, 2017; pp. 23–48. [Google Scholar]
- Rai, A.; Cherif, A.; Cruz, C.; Nabti, E. Extracts from seaweeds and Opuntia ficus-indica Cladodes enhance diazotrophic-PGPR halotolerance, their enzymatic potential, and their impact on wheat germination under salt stress. Pedosphere 2018, 2, 241–254. [Google Scholar] [CrossRef]
- Tabli, N.; Rai, A.; Bensidhoum, L.; Palmieri, G.; Gogliettino, M.; Cocca, E.; Consiglio, C.; Cillo, F.; Bubici, G.; Nabti, E. Plant growth promoting and inducible antifungal activities of irrigation well water-bacteria. Biol. Cont. 2018, 117, 78–86. [Google Scholar] [CrossRef]
- Rojas-Tapias, D.; Moreno-Galván, A.; Pardo-Díaz, S.; Obando, M.; Rivera, D.; Bonilla, R. Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Appl. Soil Ecol. 2012, 61, 264–272. [Google Scholar] [CrossRef]
- Roy, A.S.; Baruah, R.; Borah, M.; Singh, A.K.; Boruah, H.P.D.; Saikia, N.; Deka, M.; Dutta, N.; Bora, T.C. Bioremediation potential of native hydrocarbon degrading bacterial strains in crude oil contaminated soil under microcosm study. Int. Biodeterior Biodegrad. 2014, 94, 79–89. [Google Scholar] [CrossRef]
- Sayyed, R.Z.; Ilyas, N.; Tabassum, B.; Hashem, A.; Abd_Allah, E.F.; Jadhav, H.P. Plausible role of plant growth-promoting rhizobSingh acteria in future climatic scenario. In Environmental Biotechnology: For Sustainable Future; Sobti, R., Arora, N., Kothari, R., Eds.; Springer: Singapore, 2019; pp. 175–197. [Google Scholar]
- Goswami, M.; Malakar, C.; Deka, S. Rhizosphere microbes for sustainable maintenance of plant health and soil fertility. In Rhizosphere Microbes Vol. 23; Sharma, S.K., Singh, U.B., Sahu, P.K., Singh, H.V., Sharma, P.K., Eds.; Springer: Singapore, 2020; pp. 35–72. [Google Scholar]
- Guo, J.; Muhammad, H.; Lv, X.; Wei, T.; Ren, X.; Jia, H.; Atif, S.; Hua, L. Prospects and applications of plant growth promoting rhizobacteria to mitigate soil metal contamination: A review. Chemosphere 2020, 246, 125823. [Google Scholar] [CrossRef]
- Awika, J.M. Major cereal grains production and use around the world. In Advances in Cereal Science: Implications to Food Processing and Health Promotion ACS Symposium Series; Awika, J.M., Piironen, V., Bean, S., Eds.; American Chemical Society: Washington, DC, USA, 2011; pp. 1–13. [Google Scholar]
- Alexandratos, N.; Bruinsma, J. World agriculture towards 2030/2050: The 2012 revision. In ESA Working Paper; No. 12-03; FAO: Rome, Italy, 2012. [Google Scholar]
- Nonnoi, F.; Chinnaswamy, A.; de la Torre, V.S.G.; de la Peña, T.C.; Lucas, M.M.; Pueyo, J.J. Metal tolerance of rhizobial strains isolated from nodules of herbaceous legumes (Medicago spp. and Trifolium spp.) growing in mercury-contaminated soils. Appl. Soil Ecol. 2012, 61, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Shi, J.; Wang, H.; Lin, Q.; Chen, X.; Chen, Y. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotoxicol. Environ. Saf. 2007, 67, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Pečiulytė, D.; Dirginčiutė-Volodkienė, V. Effect of long-term industrial pollution on microorganisms in soil of deciduous forests situated along a pollution gradient next to a fertilizer factory: 2. Abundance and diversity of soil fungi. Ekologija 2009, 55, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Wuana, R.; Okieimen, F.E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol. 2011, 2011, 402647. [Google Scholar] [CrossRef] [Green Version]
- Poustini, K.; Siosemardeh, A. Ion distribution in wheat cultivars in response to salinity stress. Field Crops Res. 2004, 85, 125–133. [Google Scholar] [CrossRef]
- Kosová, K.; Vítámvás, P.; Prášil, I.T.; Renaut, J. Plant proteome changes under abiotic stress—Contribution of proteomics studies to understanding plant stress response. J. Proteom. 2011, 74, 1301–1322. [Google Scholar] [CrossRef]
- Dikilitas, M.; Karakas, S. Behavior of plant pathogens for crops under stress during the determination of physiological, biochemical, and molecular approaches for salt stress tolerance. In Crop Protection for Agricultural Improvement; Ashraf, A., Öztürk, M., Ahmad, M.A., Aksoy, A., Eds.; Springer: Dordrecht, The Netherland, 2012; pp. 417–441. [Google Scholar]
- Mazhar, R.; Ilyas, N.; Arshad, M.; Khalid, A.; Hussain, M. Isolation of Heavy Metal-Tolerant PGPR strains and amelioration of chromium effect in Wheat in combination with Biochar. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 1–12. [Google Scholar] [CrossRef]
- Xiao, A.W.; Li, Z.; Li, W.C.; Ye, Z.H. The effect of plant growth-promoting rhizobacteria (PGPR) on arsenic accumulation and the growth of rice plants (Oryza sativa L.). Chemosphere 2020, 242, 125136. [Google Scholar]
- Ajmal, A.W.; Yasmin, H.; Hassan, M.N.; Khan, N.; Jan, B.L.; Mumtaz, S. Heavy Metal–Resistant Plant Growth–Promoting Citrobacter werkmanii Strain WWN1 and Enterobacter cloacae Strain JWM6 Enhance Wheat (Triticum aestivum L.) Growth by Modulating Physiological Attributes and Some Key Antioxidants Under Multi-Metal Stress. Front. Microbiol. 2022, 13, 500. [Google Scholar] [CrossRef] [PubMed]
- Shilev, S.; Babrikova, I.; Babrikov, T. Consortium of plant growth-promoting bacteria improves spinach (Spinacea oleracea L.) growth under heavy metal stress conditions. J. Chem. Technol. Biotechnol. 2020, 95, 932–939. [Google Scholar] [CrossRef]
- Sumranwanich, T.; Leartsiwawinyu, W.; Meeinkuirt, W.; Chayapan, P. Application of plant growth-promoting rhizobacteria (PGPR) associated with energy plant, Pennisetum purpurenum, in cadmium and zinc contaminated soil. Res. Sq. 2022, 1–15. [Google Scholar] [CrossRef]
- Jian, L.; Bai, X.; Zhang, H.; Song, X.; Li, Z. Promotion of growth and metal accumulation of alfalfa by coinoculation with Sinorhizobium and Agrobacterium under copper and zinc stress. Peer J. 2019, 7, e6875. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Kumar, V.; Sidhu, G.K.; Datta, S.; Dhanjal, D.S.; Koul, B.; Janeja, H.S.; Singh, J. Plant growth promoting rhizobacteria from heavy metal contaminated soil promote growth attributes of Pisum sativum L. Biocatal. Agric. Biotechnol. 2019, 17, 665–671. [Google Scholar] [CrossRef]
- Sohaib, M.; Zahir, Z.A.; Khan, M.Y.; Ans, M.; Asghar, H.N.; Yasin, S.; Al-Barakah, F.N. Comparative evaluation of different carrier-based multi-strain bacterial formulations to mitigate the salt stress in wheat. Saudi J. Biol. Sci. 2020, 27, 777–787. [Google Scholar] [CrossRef]
- Afridi, M.S.; Amna; Sumaira; Mahmood, T.; Salam, A.; Mukhtar, T.; Mehmood, S.; Ali, J.; Khatoon, Z.; Bibi, M.; et al. Induction of tolerance to salinity in wheat genotypes by plant growth promoting endophytes: Involvement of ACC deaminase and antioxidant enzymes. Plant Physiol. Biochem. 2019, 139, 569–577. [Google Scholar] [CrossRef]
- Albdaiwi, R.N.; Khyami-Horani, H.; Ayad, J.Y.; Alananbeh, K.M.; Al-Sayaydeh, R. Isolation and characterization of Halotolerant Plant Growth Promoting Rhizobacteria from Durum Wheat (Triticum turgidum subsp. durum) Cultivated in Saline Areas of the Dead Sea Region. Front. Microbiol. 2019, 10, 1639. [Google Scholar] [PubMed] [Green Version]
- Boumaaza, B. Effect of Salinity-NaCl and Pseudomonas fluorescens on the germination of Wheat Genotypes (Triticum durum L.) cultivated in arid regions of Algeria. Singap. J. Sci. Res. 2020, 10, 182–189. [Google Scholar] [CrossRef]
- Shultana, R.; Kee Zuan, A.T.; Yusop, M.R.; Saud, H.M.; El-Shehawi, A.M. Bacillus tequilensis strain ‘UPMRB9′improves biochemical attributes and nutrient accumulation in different rice varieties under salinity stress. PLoS ONE 2021, 16, e0260869. [Google Scholar] [CrossRef]
- Chauhan, P.S.; Lata, C.; Tiwari, S.; Chauhan, A.S.; Mishra, S.K.; Agrawal, L.; Chakrabarty, D.; Nautiyal, C.S. Transcriptional alterations reveal Bacillus amyloliquefaciens-rice cooperation under salt stress. Sci. Rep. 2019, 9, 11912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, J.; Yuan, D.; Jin, C.; Wang, G.; Li, X.; Guan, C. Enhancement of growth and salt tolerance of rice seedlings (Oryza sativa L.) by regulating ethylene production with a novel halotolerant PGPR strain Glutamicibacter sp. YD01 containing ACC deaminase activity. Acta Physiol. Plant 2020, 42, 42. [Google Scholar] [CrossRef]
- Singh, D.P.; Singh, V.; Gupta, V.K.; Shukla, R.; Prabha, R.; Sarma, B.; Patel, J.S. Microbial inoculation in rice regulates antioxidative reactions and defense related genes to mitigate drought stress. Sci. Rep. 2020, 10, 4818. [Google Scholar] [CrossRef] [Green Version]
- Danish, S.; Kiran, S.; Fahad, S.; Ahmad, N.; Ali, M.A.; Tahir, F.A.; Rasheed, M.K.; Shahzad, K.; Li, X.; Wang, D.; et al. Alleviation of chromium toxicity in maize by Fe fortification and chromium tolerant ACC deaminase producing plant growth promoting rhizobacteria. Ecotoxicol. Environ. Saf. 2019, 185, 109706. [Google Scholar] [CrossRef]
- Danish, S.; Zafar-Ul-Hye, M.; Mohsin, F.; Hussain, M. ACC-deaminase producing plant growth promoting rhizobacteria and biochar mitigate adverse effects of drought stress on maize growth. PLoS ONE 2020, 15, e0230615. [Google Scholar] [CrossRef] [Green Version]
- Jochum, M.; McWilliams, K.; Borrego, E.J.; Kolomiets, M.V.; Niu, G.; Pierson, E.A.; Jo, Y.-K. Bioprospecting Plant growth-promoting rhizobacteria that mitigate drought stress in grasses. Front. Microb. 2019, 10, 2106. [Google Scholar] [CrossRef]
- Zhang, W.; Xie, Z.; Zhang, X.; Lang, D.; Zhang, X. Growth-promoting bacteria alleviates drought stress of G. uralensis through improving photosynthesis characteristics and water status. J. Plant Interact. 2019, 14, 580–589. [Google Scholar] [CrossRef] [Green Version]
- Danish, S.; Zafar-ul-Hye, M. Co-application of ACC-deaminase producing PGPR and timber-waste biochar improves pigments formation, growth and yield of wheat under drought stress. Sci. Rep. 2019, 9, 5999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zafar-Ul-Hye, M.; Danish, S.; Abbas, M.; Ahmad, M.; Munir, T.M. ACC deaminase producing PGPR Bacillus amyloliquefaciens and Agrobacterium fabrum along with biochar improve wheat productivity under drought stress. Agronomy 2019, 9, 343. [Google Scholar] [CrossRef]
- Ashraf, A.; Bano, A.; Ali, S.A. Characterisation of plant growth-promoting rhizobacteria from rhizosphere soil of heat-stressed and unstressed wheat and their use as bio-inoculant. Plant Biol. 2019, 21, 762–769. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.-T.; Yen, J.-H.; Liao, C.-S.; Chen, W.-C.; Chao, Y.-T. Screening of rice endophytic biofertilizers with fungicide tolerance and plant growth-promoting characteristics. Sustainability 2019, 11, 1133. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.G.M.; Attia, A.Z.G.; Mohamed, M.S.; Elsayed, H.E. Fermentation, formulation and evaluation of PGPR Bacillus subtilis isolate as a bioagent for reducing occurrence of peanut soil-borne diseases. J. Integr. Agric. 2019, 18, 2080–2092. [Google Scholar] [CrossRef]
- Zhou, Y.; Bao, J.; Zhang, D.; Li, Y.; Li, H.; He, H. Effect of heterocystous nitrogen-fixing cyanobacteria against rice sheath blight and the underlying mechanism. Appl. Soil Ecol. 2020, 153, 103580. [Google Scholar] [CrossRef]
- Bhatnagar, S.; Kumari, R. Bioremediation: A sustainable tool for environmental management–A review. Ann. Rev. Res. Biol. 2013, 3, 974–993. [Google Scholar]
- Colleran, E. Use of bacteria in bioremediation. In Methods in Biotechnology, Vol. 2. Bioremediation Protocols; Sheehan, D., Ed.; Humana Press Inc.: Totowa, NJ, USA, 1997; pp. 3–22. [Google Scholar]
- Juwarkar, A.A.; Misra, R.R.; Sharma, J.K. Recent trends in bioremediation. In Geomicrobiology and Biogeochemistry, Soil Biology 39; Parmar, N., Singh., A., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 81–100. [Google Scholar]
- Ahemad, M.; Khan, M.S. Alleviation of fungicide-induced phytotoxicity in greengram [Vigna radiata (L.) Wilczek] using fungicide-tolerant and plant growth promoting Pseudomonas strain. Saudi J. Biol. Sci. 2012, 19, 451–459. [Google Scholar] [CrossRef] [Green Version]
- Phieler, R.; Voit, A.; Kothe, E. Microbially supported phytoremediation of heavy metal contaminated soils: Strategies and applications. Adv. Biochem. Eng. Biotechnol. 2014, 141, 211–235. [Google Scholar]
- Ramanan, R.; Kim, B.H.; Cho, D.H.; Oh, H.M.; Kim, H.S. Algae–bacteria interactions: Evolution, ecology and emerging applications. Biotechnol. Adv. 2016, 34, 14–29. [Google Scholar] [CrossRef] [Green Version]
- Tekaya, S.B.; Tipayno, S.; Kim, K.; Subramanian, P.; Sa, T. Rhizobacteria: Restoration of heavy metal- contaminated soils. In Physiological Mechanisms and Adaptation Strategies in Plants under Changing Environment: Vol. 2; Ahmad, P., Wani, M.R., Eds.; Springer Science and Business Media: New York, NY, USA, 2014; pp. 297–323. [Google Scholar]
- Sarma, H.; Prasad, M.N.V. Plant-Microbe association-assisted removal of heavy metals and degradation of polycyclic aromatic hydrocarbons. In Petroleum Geosciences: Indian Contexts; Mukherjee, S., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 219–236. [Google Scholar]
- Meliani, A. Bioremediation strategies employed by Pseudomonas species. In Bacterial Metabolites in Sustainable Agroecosystem, Sustainable Development and Biodiversity 12; Maheshwari, D.K., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 351–383. [Google Scholar]
- Egamberdieva, D.; Wirth, S.; Bellingrath-Kimura, D.S.; Mishra, J.; Arora, N.K. Salt-Tolerant Plant Growth Promoting Rhizobacteria for Enhancing Crop Productivity of Saline Soils. Front. Microbiol. 2019, 10, 2791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Alencer, F.L.S.; Navoni, J.A.; do Amaral, V.S. The use of bacterial bioremediation of metals in aquatic environments in the twenty-first century: A systematic review. Environ. Sci. Pollut. Res. 2017, 24, 16545–16559. [Google Scholar] [CrossRef] [PubMed]
- Jung, B.K.; Khan, A.R.; Hong, S.-J.; Park, G.-S.; Park, Y.-J.; Kim, H.-J.; Jeon, H.-J.; Khan, M.A.; Waqas, M.; Lee, I.-J.; et al. Quorum sensing activity of the plant growth-promoting rhizobacterium Serratia glossinae GS2 isolated from the sesame (Sesamum indicum L.) rhizosphere. Ann. Microbiol. 2017, 67, 623–632. [Google Scholar] [CrossRef]
- Fiorela, L.N.; Pablo, C.B.; Walter, G. Quorum sensing signaling molecules and their inhibitors in legume-associated bacteria. In Abiotic Stress and Legumes; Vijay, P.S., Samiksha, S., Durgesh, K.T., Sheo, M.P., Renu, B., Devendra, K.C., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 277–289. [Google Scholar]
- Zhao, Q.; Yang, X.Y.; Li, Y.; Liu, F.; Cao, X.Y.; Jia, Z.H.; Song, S.S. N-3-oxo-hexanoyl-homoserine lactone, a bacterial quorum sensing signal, enhances salt tolerance in Arabidopsis and wheat. Bot. Stud. 2020, 61, 8. [Google Scholar] [CrossRef]
- Sheng, H.; Harir, M.; Boughner, L.A.; Jiang, X.; Schmitt-Kopplin, P.; Schroll, R.; Wang, F. N-acyl-homoserine lactone dynamics during biofilm formation of a 1,2,4-trichlorobenzene mineralizing community on clay. Sci. Total Environ. 2017, 605–606, 1031–1038. [Google Scholar] [CrossRef]
- Bensidhoum, L.; Nabti, E.; Tabli, N.; Kupferschmied, P.; Weiss, A.; Rothballer, M.; Schmid, M.; Keel, C.; Hartmann, A. Heavy metal tolerant Pseudomonas protegens isolates from agricultural well water in northeastern Algeria with plant growth promoting, insecticidal and antifungal activities. Eur. J. Soil Biol. 2016, 75, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Patel, P.R.; Shaikh, S.S.; Sayyed, R.Z. Dynamism of PGPR in bioremediation and plant growth promotion in heavy metal contaminated soil. Indian J. Exp. Biol. 2016, 54, 286–290. [Google Scholar]
- Muratova, A.Y.; Turkovskaya, O.V.; Antonyuk, L.P.; Makarov, O.E.; Pozdnyakova, L.I.; Ignatov, V.V. Oil-oxidizing potential of associative rhizobacteria of the genus Azospirillum. Microbiology 2005, 74, 210–215. [Google Scholar] [CrossRef]
- Gomaa, A.M.; Al-Fassi, F.A.; Al-Kenawy, Z.; Al-Gharbawi, H.T. Role of Azospirillum and Rhizobium in bio-remediating Cd and Zn polluted soil cultivated with wheat plant. Aust. J. Basic Appl. Sci. 2012, 6, 550–556. [Google Scholar]
- Deepthi, M.S.; Reena, T.; Deepu, M.S. In vitro study on the effect of heavy metals on PGPR microbes from two different soils and their growth efficiency on Oryza sativa (L.). J. Biopest. 2014, 7, 64–72. [Google Scholar]
- Vivian, A.; Murillo, J.; Jackson, R.W. The roles of plasmids in phytopathogenic bacteria: Mobile arsenals? Microbiology 2001, 147, 763–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Fernández, R.; Prats, E.; Jorrín-Novo, J.V. Proteomics of plant pathogenic fungi. J. Biomed. Biotechnol. 2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, Y.; Ye, W.; Tredway, L.; Martin, S.; Martin, M. Taxonomy and morphology of plant-parasitic nematodes associated with turfgrasses in North and South Carolina, USA. Zootaxa 2012, 3452, 1–46. [Google Scholar] [CrossRef] [Green Version]
- Choudhary, D.K.; Varma, A. Microbial-Mediated Induced Systemic Resistance in Plants; Springer Science and Business Media: Singapore, 2016. [Google Scholar]
- Farooq, M.; Hussain, M.; Wahid, A.; Siddique KH, M. Drought Stress in Plants: An Overview. In Plant Responses to Drought Stress; Aroca, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–9. [Google Scholar]
- Krishnamurthy, A.; Rathinasabapathi, B. Oxidative stress tolerance in plants. Plant Signal. Behav. 2013, 8, e2576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashraf, M.; Ahmad, M.S.A.; Öztürk, M.; Aksoy, A. Crop Improvement through different means: Challenges and prospects. In Crop Production for Agricultural Improvement; Ashraf, A., Öztürk, M., Ahmad, M.A., Aksoy, A., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 1–15. [Google Scholar]
- Chaudhary, D.; Narula, N.; Sindhu, S.S.; Behl, R.K. Plant growth stimulation of wheat (Triticum aestivum L.) by inoculation of salinity tolerant Azotobacter strains. Physiol. Mol. Biol. Plants 2013, 19, 515–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jha, C.K.; Saraf, M. Hormonal signaling by PGPR improves plant health under stress conditions. In Bacteria in Agrobiology: Stress Management; Maheshwari, D.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 119–140. [Google Scholar]
- Niranjana, S.R.; Hariprasad, P. Understanding the mechanism involved in PGPR-Mediated growth promotion and suppression of biotic and abiotic stress in plants. In Future Challenges in Crop Protection against Fungal Pathogens, Fungal Biology; Goyal, A., Manoharachary, C., Eds.; Springer: New York, NY, USA, 2014; pp. 59–108. [Google Scholar]
- Nadeem, S.M.; Naveed, M.; Ahmad, M.; Zahir, Z.A. Rhizosphere Bacteria for crop production and improvement of stress tolerance: Mechanisms of action, applications, and future prospects. In Plant Microbes Symbiosis: Applied Facets; Arora, N.K., Ed.; Springer: New Delhi, India, 2015; pp. 1–36. [Google Scholar]
- Bacilio, M.; Rodríguez, H.; Moreno, M.; Hernandez, J.-P.; Bashan, Y. Mitigation of salt stress in wheat seedlings by a gfp-tagged Azospirillum lipoferum. Biol. Fertil. Soils 2004, 40, 188–193. [Google Scholar] [CrossRef]
- Nabti, E.H.; Sahnoune, M.; Adjrad, S.; Van Dommelen, A.; Ghoul, M.; Schmid, M.; Hartmann, A. A halophilic and osmotolerant Azospirillum brasilense strain from Algerian soil restores wheat growth under saline conditions. Eng. Life Sci. 2007, 7, 354–360. [Google Scholar] [CrossRef]
- Spaepen, S.; Vanderleyden, J.; Remans, R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 2007, 31, 425–448. [Google Scholar] [CrossRef] [Green Version]
- Spaepen, S.; Versées, W.; Gocke, D.; Pohl, M.; Steyaert, J.; Vanderleyden, J. Characterization of Phenylpyruvate Decarboxylase, involved in Auxin Production of Azospirillum brasilense. J. Bacteriol. 2007, 189, 7626–7633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zahir, Z.A.; Ghani, U.; Naveed, M.; Nadeem, S.M.; Asghar, H.N. Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Arch. Microbiol. 2009, 191, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, S.K.; Singh, J.S.; Saxena, A.K.; Singh, D.P. Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biol. 2012, 14, 605–611. [Google Scholar] [CrossRef]
- Kumar, K.; Kumar, M.; Kim, S.-R.; Ryu, H.; Cho, Y.-G. Insights into genomics of salt stress response in rice. Rice 2013, 6, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramadoss, D.; Lakkineni, V.K.; Bose, P.; Ali, S.; Annapurna, K. Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. Springer Plus 2013, 2, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saghafi, K.; Ahmadi, J.; Asgharzadeh, A.; Bakhtiari, S. The effect of microbial inoculants on physiological responses of two wheat cultivars under salt stress. Int. J. Adv. Biol. Biomed. Res. 2013, 1, 421–431. [Google Scholar]
- Sahoo, R.K.; Ansari, M.W.; Pradhan, M.; Dangar, T.K.; Mohanty, S.; Tuteja, N. A novel Azotobacter vinellandii (SRIAz3) functions in salinity stress tolerance in rice. Plant Signal. Behav. 2014, 9, e29377. [Google Scholar] [CrossRef] [Green Version]
- Sen, S.; Chandrasekhar, C.N. Effect of PGPR on growth promotion of rice (Oryza sativa L.) under salt stress. Asian J. Plant Sci. Res. 2014, 4, 62–67. [Google Scholar]
- Singh, R.P.; Jha, P.; Jha, P.N. The plant-growth-promoting bacterium Klebsiella sp. SBP-8 confers induced systemic tolerance in wheat (Triticum aestivum) under salt stress. J. Plant Physiol. 2015, 184, 57–67. [Google Scholar] [CrossRef]
- Souza, R.D.; Ambrosini, A.; Passaglia, L.M.P. Plant growth-promoting bacteria as inoculants in agricultural soils. Genet. Mol. Biol. 2015, 38, 401–419. [Google Scholar] [CrossRef] [PubMed]
- Silini, A.; Cherif-Silini, H.; Yahiaoui, B. Growing varieties durum wheat (Triticum durum) in response to the effect of osmolytes and inoculation by Azotobacter chroococcum under salt stress. Afr. J. Microbiol. Res. 2016, 10, 387–399. [Google Scholar]
- Arzanesh, M.H.; Alikhani, H.A.; Khavazi, K.; Rahimian, H.A.; Miransari, M. Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World J. Microbiol. Biotechnol. 2011, 27, 197–205. [Google Scholar] [CrossRef]
- Sandhya, V.; Ali, S.Z.; Grover, M.; Reddy, G.; Venkateswarlu, B. Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regul. 2010, 62, 21–30. [Google Scholar] [CrossRef]
- Ruíz-Sánchez, M.; Armada, E.; Muñoz, Y.; de Salamone, I.E.G.; Aroca, R.; Ruíz-Lozano, J.M.; Azcón, R. Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions. J. Plant Physiol. 2011, 168, 1031–1037. [Google Scholar] [CrossRef] [PubMed]
- El-Afry, M.M.; El-Nady, M.F.; Abdelmonteleb, E.B.; Metwaly, M.M.S. Anatomical studies on drought-stressed wheat plants (Triticum aestivum L.) treated with some bacterial strains. Acta Biol. Szeged. 2012, 56, 165–174. [Google Scholar]
- Kasim, W.A.; Osman, M.E.; Omar, M.N.; El-Daim, A.; Islam, A.; Bejai, S.; Meijer, J. Control of drought stress in wheat using Plant-Growth-Promoting Bacteria. J. Plant Growth Regul. 2013, 32, 122–130. [Google Scholar] [CrossRef]
- Naveed, M.; Hussain, M.B.; Zahir, Z.A.; Mitter, B.; Sessitsch, A. Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul. 2014, 73, 121–131. [Google Scholar] [CrossRef]
- Timmusk, S.; Abd El-Daim, I.A.; Copolovici, L.; Tanilas, T.; Kännaste, A.; Behers, L.; Nevo, E.; Seisenbaeva, G.; Stenström, E.; Niinemets, U. Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: Enhanced biomass production and reduced emissions of stress volatiles. Soil Biol. Biochem. 2014, 9, e96086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gusain, S.Y.; Singh, U.S.; Sharma, A.K. Enzymatic amelioration of drought stress in rice through the application of Plant Growth Promoting Rhizobacteria (PGPR). Int. J. Curr. Res. 2014, 6, 4487–4491. [Google Scholar]
- Gusain, Y.S.; Singh, U.S.; Sharma, A.K. Bacterial mediated amelioration of drought stress in drought tolerant and susceptible cultivars of rice (Oryzae sativa L.). Afr. J. Biotechnol. 2015, 14, 764–773. [Google Scholar] [CrossRef] [Green Version]
- Verma, C.; Singh, P.; Kumar, R. Isolation and characterization of heavy metal resistant PGPR and their role in enhancement of growth of wheat plant under metal (Cadmium) stress condition. Arch. Appl. Sci. Res. 2015, 7, 37–43. [Google Scholar]
- Islam, F.; Yasmeen, T.; Ali, Q.; Ali, S.; Arif, M.S.; Hussain, S.; Rizvi, H. Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress. Ecotoxicol. Environ. Saf. 2014, 104, 285–293. [Google Scholar] [CrossRef]
- Khan, M.Y.; Asghar, H.N.; Jamshaid, M.U.; Akhtar, M.J.; Zahir, Z.A. Effect of microbial inoculation on wheat growth and phytostabilization of chromium contaminated soil. Pak. J. Bot. 2013, 45, 27–34. [Google Scholar]
- Gontia-Mishra, I.; Sapre, S.; Sharma, A.; Tiwari, S. Alleviation of mercury toxicity in wheat by the interaction of mercury-tolerant plant growth-promoting rhizobacteria. J. Plant Growth Regul. 2016, 35, 1000–1012. [Google Scholar] [CrossRef]
- Pandey, S.; Ghosh, P.K.; Ghosh, S.; De, T.K.; Maiti, T.K. Role of heavy metal resistant Ochrobactrum sp. and Bacillus spp. strains in bioremediation of a rice cultivar and their PGPR like activities. J. Microbiol. 2013, 51, 11–17. [Google Scholar] [CrossRef]
- Annapurna, K.; Kumar, A.; Kumar, L.V.; Govindasamy, V.; Bose, P.; Ramadoss, D. PGPR-Induced systemic resistance (ISR) in plant disease management. In Bacteria in Agrobiology: Disease Management; Maheshwari, D.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 405–425. [Google Scholar]
- Reddy, P.P. Plant Growth-Promoting Rhizobacteria (PGPR). In Recent Advances in Crop Protection; Reddy, P.P., Ed.; Springer: New Delhi, India, 2013; pp. 131–158. [Google Scholar]
- Gupta, G.; Parihar, S.S.; Ahirwar, N.K.; Snehi, S.K.; Singh, V. Plant Growth Promoting Rhizobacteria (PGPR): Current and future prospects for development of sustainable agriculture. J. Microb. Biochem. Technol. 2015, 7, 96–102. [Google Scholar]
- Saravanakumar, D.; Lavanya, N.; Muthumeena, K.; Raguchander, T.; Samiyappan, R. Fluorescent pseudomonad mixtures mediate disease resistance in rice plants against sheath rot (Sarocladium oryzae) disease. Biocontrol 2009, 54, 273–286. [Google Scholar] [CrossRef]
- Ramamoorthy, V.; Viswanathan, R.; Raguchander, T.; Prakasam, V.; Samiyappan, R. Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot. 2001, 20, 1–11. [Google Scholar] [CrossRef]
- Höfte, M.; Bakker, P.A.H.M. Competition for iron and induced systemic resistance by siderophores of Plant Growth Promoting Rhizobacteria. In Microbial Siderophores; Varma, A., Chincholkar, S.B., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 12, pp. 121–133. [Google Scholar]
- Petrik, M.; Zhai, C.; Novy, Z.; Urbanek, L.; Haas, H.; Decristoforo, C. In Vitro and In Vivo comparison of selected Ga-68 and Zr-89 labelled siderophores. Mol. Imaging Biol. 2016, 18, 344–352. [Google Scholar] [CrossRef] [Green Version]
- Panpatte, D.G.; Jhala, Y.K.; Shelat, H.N.; Vyas, R.V. Pseudomonas fluorescens: A promising biocontrol agent and PGPR for sustainable agriculture. In Microbial Inoculants in Sustainable Agricultural Productivity; Singh, D.P., Singh, H.B., Prabha, R., Eds.; Springer: New Delhi, India, 2016; Volume 2, pp. 257–270. [Google Scholar]
- Zandi, P.; Basu, S.B. Role of Plant Growth-Promoting Rhizobacteria (PGPR) as biofertilizers in stabilizing agricultural ecosystems. In Organic Farming for Sustainable Agriculture, Sustainable Development and Biodiversity; Nandwani, D., Ed.; Springer International Publishing: Cham, Switzerland, 2016; Volume 9, pp. 71–87. [Google Scholar]
- Diels, L.; De Smet, M.; Hooyberghs, L.; Corbisier, P. Heavy metals bioremediation of soil. Mol. Biotechnol. 1999, 12, 149–158. [Google Scholar] [CrossRef]
- Kumar, V.V. Plant Growth-Promoting Microorganisms: Interaction with plants and soil. In Plant, Soil and Microbes; Hakeem, K.R., Akhtar, M.S., Abdullah, S.N.A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–16. [Google Scholar]
- Saha, M.; Sarkar, S.; Sarkar, B.; Sharma, B.K.; Bhattacharjee, S.; Tribedi, P. Microbial siderophores and their potential applications: A review. Environ. Sci. Pollut Res. 2016, 23, 3984–3999. [Google Scholar] [CrossRef] [PubMed]
- Rana, A.; Saharan, B.; Nain, L.; Prasanna, R.; Shivay, Y.S. Enhancing micronutrient uptake and yield of wheat through bacterial PGPR consortia. Soil Sci. Plant Nutr. 2012, 58, 573–582. [Google Scholar] [CrossRef]
- De Vleesschauwer, D.; Djavaheri, M.; Bakker, P.A.; Hofte, M. Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactin-mediated priming for a salicylic acid-repressible multifaceted defense response. Plant Physiol. 2008, 148, 1996–2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amutharaj, P.; Sekar, C.; Natheer, S.E. Development and use of different formulations of Pseudomonas fluorescens siderophore for the enhancement of plant growth and induction of systemic resistance against Pyricularia oryzae in lowland rice. Int. J. Pharm. Bio Sci. 2013, 4, 831–838. [Google Scholar]
- Naureen, Z.; Hafeez, F.Y.; Hussain, J.; Al Harrasi, A.; Bouqellah, N.; Roberts, M.R. Suppression of incidence of Rhizoctonia solani in rice by siderophore producing rhizobacterial strains based on competition for iron. Eur. Sci. J. 2015, 11, 186–207. [Google Scholar]
- Singh, J.S.; Singh, D.P. Plant Growth Promoting Rhizobacteria (PGPR): Microbes in sustainable agriculture. In Management of Microbial Resources in the Environment; Malik, A., Grohmann, E., Alves, M., Eds.; Springer Science and Business Media: Dordrecht, The Netherlands, 2013; pp. 361–385. [Google Scholar]
- Kiani, M.Z.; Sultan, T.; Ali, A.; Rizvi, Z.F. Application of ACC-deaminase containing PGPR improves sunflower yield under natural salinity stress. Pak. J. Bot. 2016, 48, 53–56. [Google Scholar]
- Glick, B.R. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res. 2014, 169, 30–39. [Google Scholar] [CrossRef]
- Govindasamy, V.; Senthilkumar, M.; Annapurna, K. Effect of mustard rhizobacteria on wheat growth promotion under Cadmium stress: Characterization of acdS gene coding ACC deaminase. Ann. Microbiol. 2015, 65, 1679–1687. [Google Scholar] [CrossRef]
- Abbas, T.; Pervez, M.A.; Ayyub, C.M.; Ahmad, R. Assessment of morphological, antioxidant, biochemical and ionic responses of salt tolerant and salt-sensitive okra (Abelmoschus esculentus) under saline regime. Pak. J. Life Soc. Sci. 2013, 11, 147–153. [Google Scholar]
- Etesami, H.; Hosseini, H.M.; Alikhani, H.A.; Mohammadi, L. Bacterial biosynthesis of 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase and Indole-3-Acetic Acid (IAA) as endophytic preferential selection traits by rice plant seedlings. J. Plant Growth Regul. 2014, 33, 654–670. [Google Scholar] [CrossRef]
- Bhattacharjee, R.B.; Jourand, P.; Chaintreuil, C.; Dreyfus, B.; Singh, A.; Mukhopadhyay, S.N. Indole acetic acid and ACC Deaminase-producing Rhizobium leguminosarum bv. trifolii SN10 promote rice growth, and in the process undergo colonization and chemotaxis. Biol. Fertil. Soils 2012, 48, 173–182. [Google Scholar] [CrossRef]
- Bal, H.B.; Nayak, L.; Das, S.; Adhya, T.K. Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant Soil 2013, 366, 93–105. [Google Scholar] [CrossRef]
- Han, Y.; Wang, R.; Yang, Z.; Zhan, Y.; Ma, Y.; Ping, S.; Zhang, L.; Lin, M.; Yan, Y. 1-Aminocyclopropane-1-Carboxylate Deaminase from Pseudomonas stutzeri A1501 facilitates the growth of Rice in the presence of salt or heavy metals. J. Microbiol. Biotechnol. 2015, 25, 1119–1128. [Google Scholar] [CrossRef] [PubMed]
- Shaharoona, B.; Jamro, G.M.; Zahir, Z.A.; Arshad, M.; Memon, K.S. Effectiveness of various Pseudomonas spp. and Burkholderia caryophylli containing ACC-Deaminase for improving growth and yield of Wheat (Triticum aestivum L.). J. Microbiol. Biotechnol. 2007, 17, 1300–1307. [Google Scholar] [PubMed]
- Shakir, M.A.; Bano, A.; Arshad, M. Rhizosphere bacteria containing ACC-deaminase conferred drought tolerance in wheat grown under semi-arid climate. Soil Environ. 2012, 31, 108–112. [Google Scholar]
- Hassan, W.; Hussain, M.M.; Bashir, S.; Shah, A.; Bano, R.; David, J.C. ACC-deaminase and/or nitrogen fixing rhizobacteria and growth of wheat (Triticum aestivum L.). J. Soil Sci. Plant Nutr. 2015, 15, 232–248. [Google Scholar] [CrossRef] [Green Version]
- Pande, A.M.; Kulkarni, N.S.; Bodhankar, M.G. Effect of PGPR with ACC- Deaminase activity on growth performance of wheat cultivated under stress conditions. Int. J. Appl. Res. 2016, 2, 723–726. [Google Scholar]
- Singh, R.P.; Jha, P.N. Mitigation of salt stress in wheat plant (Triticum aestivum) by ACC deaminase bacterium Enterobacter sp. SBP-6 isolated from Sorghum bicolor. Acta Physiol. Plant 2016, 38, 110. [Google Scholar] [CrossRef]
- Sundaram, V.M.; Kathiresan, D.; Eswaran, S.; Sankaralingam, S.; Balakan, B.; Harinathan, B. Phosphate solubilization and phytohormones production by rhizosphere microorganisms. Adv. Agric. Biol. 2016, 5, 5–13. [Google Scholar]
- Song, O.R.; Lee, S.J.; Lee, Y.S.; Lee, S.C.; Kim, K.K.; Choi, Y.L. Solubilization of insoluble inorganic phosphate by Burkholderia Cepacia DA23 isolated from cultivated soil. Braz. J. Microbiol. 2008, 39, 151–156. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.B.; Sayyed, R.Z.; Trivedi, M.H.; Gobi, T.A. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2013, 2, 587. [Google Scholar] [CrossRef] [Green Version]
- Vijayalakshmi, R.; Kairunnisa, K.; Natarajan, S. Phosphate solubilization by rhizosphere Bacteria isolated from Rose Garden soils of Satkhol, India. J. Acad. Ind. Res. 2016, 4, 243–245. [Google Scholar]
- Ahemad, M. Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: A review. 3Biotech 2015, 5, 111–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, D.; Sinha, S.N. Isolation and characterization of a phosphate solubilizing heavy metal tolerant bacterium from River Ganga, West Bengal, India. Songklanakarin J. Sci. Technol. 2015, 37, 651–657. [Google Scholar]
- Kaur, G.; Reddy, M.S. Effects of Phosphate-solubilizing Bacteria, rock phosphate and chemical fertilizers on Maize-Wheat cropping cycle and economics. Pedosphere 2015, 25, 428–437. [Google Scholar] [CrossRef]
- Kumar, V.; Behl, R.K.; Narula, N. Establishment of phosphate-solubilizing strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under greenhouse conditions. Microbiol. Res. 2001, 156, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Narula, N. Solubilization of inorganic phosphates and growth emergence of wheat as affected by Azotobacter chroococcum mutants. Biol. Fertil. Soils 1999, 28, 301–305. [Google Scholar] [CrossRef]
- Afzal, A.; Bano, A. Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum L.). Int. J. Agric. Biol. 2008, 10, 85–88. [Google Scholar]
- Schoebitz, M.; Ceballos, C.; Ciampi, L. Effect of immobilized phosphate-solubilizing bacteria on wheat growth and phosphate uptake. J. Soil Sci. Plant Nutr. 2013, 13, 1–10. [Google Scholar] [CrossRef]
- Sarker, A.; Talukder, N.M.; Islam, M.T. Phosphate solubilizing bacteria promote growth and enhance nutrient uptake by wheat. Plant Sci. Today 2014, 1, 86–93. [Google Scholar] [CrossRef]
- Panhwar, Q.A.; Radziah, O.; Zaharah, A.R.; Sariah, M.; Razi, I.M. Role of phosphate solubilizing bacteria on rock phosphate solubility and growth of aerobic rice. J. Environ. Biol. 2011, 32, 607–612. [Google Scholar]
- Stephen, J.; Shabanamol, S.; Rishad, K.S.; Jisha, M.S. Growth enhancement of rice (Oryza sativa) by phosphate solubilizing Gluconacetobacter sp. (MTCC 8368) and Burkholderia sp. (MTCC 8369) under greenhouse conditions. 3Biotech 2015, 5, 831–837. [Google Scholar] [CrossRef] [Green Version]
- Vahed, H.S.; Shahinrokhsar, P.; Heydarnezhad, F. Performance of phosphate solubilizing bacteria for improving growth and yield of rice (Oryza sativa L.) in the presence of phosphorus fertilizer. Int. J. Agri. Crop Sci. 2012, 4, 1228–1232. [Google Scholar]
- Went, F.W.; Thimann, K.V. Phytohormones; The Macmillan Company: New York, NY, USA, 1937. [Google Scholar]
- Kende, H.; Zeevaart, J.A.D. The five “Classical” plant hormones. Plant Cell 1997, 9, 1197–1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wani, S.H.; Kumar, V.; Shriram, V.; Sah, S.K. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J. 2016, 4, 162–176. [Google Scholar] [CrossRef] [Green Version]
- Cao, Z.Y.; Sun, L.H.; Mou, R.X.; Zhang, L.P.; Lin, X.Y.; Zhu, Z.W.; Chen, M.X. Profiling of phytohormones and their major metabolites in rice using binary solid-phase extraction and liquid chromatography-triple quadrupole mass spectrometry. J. Chromatogr. A 2016, 1451, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Azeem, S.A.M.; Mehana, T.A.; Shabayek, A.A. Some plant growth promoting traits of rhizobacteria isolated from Suez Canal region, Egypt. In African Crop Science Conference Proceeding; African Crop Science Society: El-Minia, Egypt, 2007; Volume 8, pp. 1517–1525. [Google Scholar]
- Dinesh, R.; Anandaraj, M.; Kumar, A.; Bini, Y.K.; Subila, K.P.; Aravind, R. Isolation, characterization, and evaluation of multi-trait plant growth promoting rhizobacteria for their growth promoting and disease suppressing effects on ginger. Microbiol. Res. 2015, 173, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Etesami, H.; Alikhani, H.A.; Hosseini, H.M. Indole-3-acetic acid (IAA) production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice growth promoting agents. MethodsX 2015, 2, 72–78. [Google Scholar] [CrossRef]
- Sharma, A.; Shankhdhar, D.; Shankhdhar, S. Growth promotion of the rice genotypes by PGPRs isolated from rice rhizosphere. J. Soil Sci. Plant Nutr. 2014, 14, 505–517. [Google Scholar] [CrossRef]
- Lavakush, Y.J.; Verma, J.P. Isolation and characterization of effective Plant Growth Promoting Rhizobacteria from rice rhizosphere of Indian soil. Asian J. Biol. Sci. 2012, 5, 294–303. [Google Scholar]
- Murtaza, H.; Asghari, B.; Hassan, S.G.; Javed, I.; Umer, A.; Khan, K.A. Enhancement of rice growth and production of Growth-Promoting phytohormones by inoculation with Rhizobium and other Rhizobacteria. World Appl. Sci. J. 2014, 31, 1734–1743. [Google Scholar]
- Yadav, J.; Verma, J.P.; Tiwari, K.N. Plant growth promoting activities of Fungi and their effect on Chickpea plant growth. Asian J. Biol. Sci. 2011, 4, 291–299. [Google Scholar] [CrossRef] [Green Version]
- Habib, S.H.; Kausar, H.; Saud, H.M.; Ismail, M.R.; Othman, R. Molecular characterization of stress tolerant plant growth promoting Rhizobacteria (PGPR) for growth enhancement of rice. Int. J. Agric. Biol. 2015, 18, 184–191. [Google Scholar] [CrossRef]
- Torres-Rubio, M.G.; Valencia-Plata, S.A.; Bernal-Castillo, J.; Martínez-Nieto, P. Isolation of Enterobacteria, Azotobacter sp. and Pseudomonas sp., producers of indole-3-acetic acid and siderophores, from Colombian rice rhizosphere. Rev. Latinoam. Microbiol. 2000, 42, 171–176. [Google Scholar]
- Tsavkelova, E.A.; Klimova, S.Y.; Cherdyntseva, T.A.; Netrusov, A. Microbial producers of plant growth stimulators and their practical use: A Review. Appl. Biochem. Microbiol. 2006, 42, 117–126. [Google Scholar] [CrossRef]
- Jha, P.; Kumar, A. Characterization of novel plant growth promoting endophytic Bacterium Achromobacter xylosoxidans from wheat plant. Microb. Ecol. 2009, 58, 179–188. [Google Scholar] [CrossRef]
- Soltani, A.-A.; Khavazi, K.; Asadi-Rahmani, H.; Omidvari, M.; Dahaji, P.A.; Mirhoseyni, H. Plant Growth Promoting characteristics in some Flavobacterium spp. isolated from soils of Iran. J. Agric. Sci. 2010, 2, 106–115. [Google Scholar] [CrossRef] [Green Version]
- RameshKumar, N.; Krishnan, M.; Kandeepan, C.; Kayalvizhi, N. Molecular and functional diversity of PGPR fluorescent Pseudomonas isolated from rhizosphere of rice (Oryza sativa L.). Int. J. Adv. Biotechnol. Res. 2014, 5, 490–505. [Google Scholar]
- Takahashi, N.; Phinney, B.O.; MacMillan, J. Gibberellins, with 176 Illustrations; Springer: New York, NY, USA, 1991. [Google Scholar]
- Maheshwari, D.K.; Dheeman, S.; Agarwal, M. Phytohormone-Producing PGPR for sustainable agriculture. In Bacterial Metabolites in Sustainable Agroecosystem, Sustainable Development and Biodiversity; Maheshwari, D.K., Ed.; Springer International Publishing: Cham, Switzerland, 2015; Volume 12, pp. 159–182. [Google Scholar]
- Kang, S.-M.; Waqas, M.; Khan, A.L.; Lee, I.-J. Plant-Growth-Promoting Rhizobacteria: Potential candidates for gibberellins production and crop growth promotion. In Use of Microbes for the Alleviation of Soil Stresses, Vol. 1; Miransari, M., Ed.; Springer Science+Business Media: New York, NY, USA, 2014; pp. 1–19. [Google Scholar]
- Caba, J.M.; Centeno, M.L.; Fernández, B.; Gresshoff, P.M.; Ligero, F. Inoculation and nitrate alter phytohormone levels in soya bean roots differences between a super nodulating mutant and the wild type. Planta 2000, 211, 98–104. [Google Scholar] [CrossRef]
- Kucey, R.M.N. Plant growth-altering effects of Azospirillum brasilense and Bacillus C-11-25 on two wheat cultivars. J. Appl. Bacteriol. 1988, 64, 187–196. [Google Scholar] [CrossRef]
- Creus, C.; Sueldo, R.; Barassi, C. Shoot growth and water status in Azospirillum-inoculated wheat seedlings grown under osmotic and salt stresses. Plant Physiol. Biochem. 1997, 35, 939–944. [Google Scholar]
- Bottini, R.; Cassán, F.; Piccoli, P. Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl. Microbiol. Biotechnol. 2004, 65, 497–503. [Google Scholar] [CrossRef]
- Upadhyay, S.K.; Singh, D.P.; Saikia, R. Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition. Curr. Microbiol. 2009, 59, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Lenin, G.; Jayanthi, M. Indole Acetic Acid, Gibberellic Acid and Siderophore production by PGPR isolates from Rhizospheric soils of Catharanthus roseus. Int. J. Pharm. Biol. Arch. 2012, 3, 933–938. [Google Scholar]
- Sethi, S.K.; Adhikary, S.P. Azotobacter: A Plant-Growth Promoting Rhizobacteria used as biofertilizer. Dyn. Biochem. Process Biotechnol. Mol. Biol. 2012, 6, 68–74. [Google Scholar]
- Jha, Y.; Subramanian, R.B. Characterization of root-associated bacteria from paddy and its growth-promotion efficacy. 3Biotech 2014, 4, 325–330. [Google Scholar] [CrossRef]
- Kumar, S.; Agarwal, M.; Dheeman, S.; Maheshwari, D.K. Exploitation of phytohormone-producing PGPR in development of multispecies bioinoculant formulation. In Bacterial Metabolites in Sustainable Agroecosystem, Sustainable Development and Biodiversity; Maheshwari, D.K., Ed.; Springer International Publishing: Cham, Switzerland, 2015; Volume 12, pp. 297–317. [Google Scholar]
- Lakzadeh, B.; Mir-Mahmoodi, T.; Jalilnezhad, N. Effects of Azospirillum Bacteria and Gibberellin hormone on morpho-physiological properties, yield and yield components of Corn (Zea mays L.). Biol. Forum 2015, 7, 986–993. [Google Scholar]
- Wong, W.S.; Tan, S.N.; Ge, L.; Chen, X.; Yong, J.W.H. The importance of phytohormones and microbes in biofertilizers. In Bacterial Metabolites in Sustainable Agroecosystem, Sustainable Development and Biodiversity; Maheshwari, D.K., Ed.; Springer International Publishing: Cham, Switzerland, 2015; Volume 12, pp. 105–158. [Google Scholar]
- Conrad, K.; Bettin, D.; Neumann, S. The cytokinin production of Azospirillum and Klebsiella and its possible ecological effects. In Physiology and Biochemistry of Cytokinins in Plants: Proceeding of the International Symposium on Physiology and Biochemistry of Cytokinins in Plants; Kamínek, M., Mok, D.W., Zažímalová, E., Eds.; SPB Academic Publishing: The Hague, The Netherlands, 1992; pp. 401–405. [Google Scholar]
- Akiyoshi, D.E.; Regier, D.A.; Gordon, M.P. Cytokinin production by Agrobacterium and Pseudomonas spp. J. Bacteriol. 1987, 169, 4242–4248. [Google Scholar] [CrossRef] [Green Version]
- Taller, B.J.; Wong, T.Y. Cytokinins in Azotobacter vinelandii Culture Medium. Appl. Environ. Microbiol. 1989, 55, 266–267. [Google Scholar] [CrossRef] [Green Version]
- Timmusk, S.; Nicander, B.; Granhall, U.; Tillberg, E. Cytokinin production by Paenibacillus polymyxa. Soil Biol. Biochem. 1999, 31, 1847–1852. [Google Scholar] [CrossRef]
- Donderski, W.; Głuchowska, M. Production of Cytokinin-like substances by planktonic bacteria isolated from lake Jeziorak. Pol. J. Environ. Stud. 2000, 9, 369–376. [Google Scholar]
- Kämpfer, P.; Ruppel, S.; Remus, R. Enterobacter radicincitans sp. nov., a plant growth promoting species of the family Enterobacteriaceae. Syst. Appl. Microbiol. 2005, 28, 213–221. [Google Scholar] [CrossRef]
- Ortiz-Castro, R.; Valencia-Cantero, E.; Lopez-Bucio, J. Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Signal. Behav. 2008, 3, 263–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zahir, Z.A.; Asghar, H.N.; Arshad, M. Cytokinin and its precursors for improving growth and yield of rice. Soil Biol. Biochem. 2001, 33, 405–408. [Google Scholar] [CrossRef]
- Kudoyarova, G.R.; Melentiev, A.I.; Martynenko, E.V.; Timergalina, L.N.; Arkhipova, T.N.; Shendel, G.V.; Kuz’Mina, L.Y.; Dodd, I.C.; Veselov, S.Y. Cytokinin producing bacteria stimulate amino acid deposition by wheat roots. Plant Physiol. Biochem. 2014, 83, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Endo, A.; Okamoto, M.; Koshiba, T. ABA biosynthetic and catabolic pathways. In Abscisic Acid: Metabolism, Transport and Signaling; Zhang, D.P., Ed.; Springer Science and Business Media: Dordrecht, The Netherlands, 2014; pp. 21–46. [Google Scholar]
- Gomez-Cadenas, A.; Vives, V.; Zandalinas, S.; Manzi, M.; Sanchez-Perez, A.; Perez-Clemente, R.; Arbona, V. Abscisic Acid: A versatile phytohormone in plant signaling and beyond. Curr. Protein Pept. Sci. 2015, 16, 413–434. [Google Scholar] [CrossRef]
- Travaglia, C.; Cohen, A.C.; Reinoso, H.; Castillo, C.; Bottini, R. Exogenous abscisic acid increases carbohydrate accumulation and redistribution to the grains in wheat grown under field conditions of soil water restriction. J. Plant Growth Regul. 2007, 26, 285–289. [Google Scholar] [CrossRef]
- Yang, C.W.; Wang, J.W.; Kao, C.H. The relation between accumulation of Abscisic Acid and proline in detached rice leaves. Biol. Plant 2000, 43, 301–304. [Google Scholar] [CrossRef]
- Azuma, T.; Hatanaka, T.; Uchida, N.; Yasuda, T. Interactions between abscisic acid, ethylene and gibberellin in internodal elongation in floating rice: The promotive effect of abscisic acid at low humidity. Plant Growth Regul. 2003, 41, 105–109. [Google Scholar] [CrossRef]
- Golubyatnikov, L.L.; Mokhov, I.I.; Eliseev, A.V. Nitrogen cycle in the earth climatic system and its modeling. Izv. Atmos. Ocean Phys. 2013, 49, 229–243. [Google Scholar] [CrossRef]
- Bertrand, J.C.; Bonin, P.; Caumette, P.; Gattuso, J.P.; Grégori, G.; Guyoneaud, R.; Roux, X.L.; Matheron, R.; Poly, F. Biogeochemical cycles. In Environmental Microbiology: Fundamentals and Applications: Microbial Ecology; Bertrand, J.C., Caumette, P., Lebaron, P., Matheron, R., Normand, P., Ngando, T.S., Eds.; Springer Science and Business Media: Dordrecht, The Netherlands, 2015; pp. 511–617. [Google Scholar]
- Galloway, J.N.; Dentener, F.J.; Capone, D.G.; Boyer, E.W.; Howarth, R.W.; Seitzinger, S.P.; Asner, G.P.; Cleveland, C.C.; Green, P.A.; Holland, E.A.; et al. Nitrogen cycles: Past, present, and future. Biogeochemistry 2004, 70, 153–226. [Google Scholar] [CrossRef]
- Lassaletta, L.; Billen, G.; Grizzetti, B.; Garnier, J.; Leach, A.; Galloway, J.N. Food and feed trade as a driver in the global nitrogen cycle: 50-year trends. Biogeochemistry 2014, 118, 225–241. [Google Scholar] [CrossRef] [Green Version]
- Rao, V.R.; Jena, P.K.; Adhya, T.K. Inoculation of rice with nitrogen-fixing bacteria-problems and perspectives. Biol. Fertil. Soils 1987, 4, 21–26. [Google Scholar] [CrossRef]
- Hartmann, A. Biotechnological aspects of diazotrophic bacteria associated with rice. In Biological Nitrogen Fixation Associated with Rice Production; Rahman, M., Ed.; Springer Science and Business Media: Dordrecht, The Natherlands, 1996; pp. 211–224. [Google Scholar]
- Malik, K.; Bilal, R.; Mehnaz, S.; Rasul, G.; Mirza, M.; Ali, S. Association of nitrogen-fixing, plant-growth-promoting rhizobacteria (PGPR) with kallar grass and rice. Plant Soil 1997, 194, 37–44. [Google Scholar] [CrossRef]
- Santa, O.R.D.; Hernández, R.F.; Alvarez, G.L.M.; Junior, P.R.; Soccol, C.R. Azospirillum sp. Inoculation in Wheat, Barley and Oats Seeds Greenhouse Experiments. Braz. Arch. Biol. Technol. 2004, 47, 843–850. [Google Scholar] [CrossRef] [Green Version]
- Nabti, E.; Sahnoune, M.; Ghoul, M.; Fischer, D.; Hofmann, A.; Rothballer, M.; Schmid, M.; Hartmann, A. Restoration of growth of durum wheat (Triticum durum var. Waha) under saline conditions due to inoculation with the Rhizosphere Bacterium Azospirillum brasilense NH and extracts of the marine Alga Ulva lactuca. J. Plant Growth Regul. 2010, 29, 6–22. [Google Scholar] [CrossRef]
- Volpiano, C.G.; Estevam, A.; Saatkamp, K.; Furlan, F.; Vendruscolo, E.C.G.; Dos Santos, M.F. Physiological responses of the co-cultivation of PGPR with two wheat cultivars in vitro under stress conditions. BMC Proc. 2014, 8, P108. [Google Scholar] [CrossRef] [Green Version]
- Mirza, M.S.; Mehnaz, S.; Normand, P.; Prigent-Combaret, C.; Moënne-Loccoz, Y.; Bally, R.; Malik, K.A. Molecular characterization and PCR detection of a nitrogen-fixing Pseudomonas strain promoting rice growth. Biol. Fertil. Soils 2006, 43, 163–170. [Google Scholar] [CrossRef]
- Shabaev, V.P.; Voronina, L.P. Grain yield and quality of winter wheat inoculated with a mixed culture of Pseudomonas Bacteria against the background of increasing Nitrogen fertilizer Rates. Russ. Agric. Sci. 2007, 33, 311–313. [Google Scholar] [CrossRef]
- Park, M.; Kim, C.; Yang, J.; Lee, H.; Shin, W.; Kim, S.; Sa, T. Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol. Res. 2005, 160, 127–133. [Google Scholar] [CrossRef]
- Brusamarello-Santos, L.C.C.; Pacheco, F.; Aljanabi, S.M.M.; Monteiro, R.A.; Cruz, L.; Baura, V.A.; Pedrosa, F.O.; Souza, E.; Wassem, R. Differential gene expression of rice roots inoculated with the diazotroph Herbaspirillum seropedicae. Plant Soil 2012, 356, 113–125. [Google Scholar] [CrossRef]
- Milošević, N.; Tintor, B.; Protić, R.; Cvijanović, G.; Dimitrijević, T. Effect of inoculation with Azotobacter chroococcum on wheat yield and seed quality. Rom. Biotechnol. Lett. 2012, 17, 7352–7357. [Google Scholar]
- Habibi, S.; Djedidi, S.; Prongjunthuek, K.; Mortuza, F.; Ohkama-Ohtsu, N.; Sekimoto, H.; Yokoyoma, T. Physiological and genetic characterization of rice nitrogen fixer PGPR isolated from rhizosphere soils of different crops. Plant Soil 2014, 379, 51–66. [Google Scholar] [CrossRef]
- Iniguez, A.L.; Dong, Y.; Triplett, E.W. Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Mol. Plant Microbe Interact. 2004, 17, 1078–1085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trân Van, V.; Berge, O.; Ngô Kê, S.; Balandreau, J.; Heulin, T. Repeated beneficial effects of rice inoculation with a strain of Burkholderia vietnamiensis on early and late yield components in low fertility sulphate acid soils of Vietnam. Plant Soil 2000, 218, 273–284. [Google Scholar] [CrossRef]
- Govindarajan, M.; Balandreau, J.; Kwon, S.-W.; Weon, H.-Y.; Lakshminarasimhan, C. Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of Rice. Microb. Ecol. 2008, 55, 21–37. [Google Scholar] [CrossRef]
- Muriel, C.; Jalvo, B.; Redondo-Nieto, M.; Rivilla, R.; Martín, M. Chemotactic motility of Pseudomonas fluorescens F113 under aerobic and denitrification conditions. PLoS ONE 2015, 10, e0132242. [Google Scholar] [CrossRef] [Green Version]
- Pothier, J.; Prigent-Combaret, C.; Haurat, J.; Moënne-Loccoz, Y.; Wisniewski-Dyé, F. Duplication of Plasmid-Borne Nitrite Reductase Gene nirK in the Wheat-Associated Plant Growth–Promoting Rhizobacterium Azospirillum brasilense Sp245. Mol. Plant Microbe Interact. 2008, 21, 831–842. [Google Scholar] [CrossRef]
Bacterial Genera | Soil-Related Problem | Targeted Crops | Reference |
---|---|---|---|
Bacillus | Toxic metals (Cr) | Triticum durum | Mazhar et al., 2020 [32] |
Pseudomonas Bacillus | Toxic metals (As) | Oryza sativa | Xiao et al., 2020 [33] |
Enterobacter Citrobacter | Toxic metals (Cd, Ni and Pb) | Triticum aestivum | Ajmal et al., 2022 [34] |
Pseudomonas Bacillus | Toxic metals (Cd, Pb, Zn) | Spinacea oleracea L. | Shilev et al., 2020 [35] |
Klebsiella Pantoea | Toxic metals (Cd, Zn) | Pennisetum purpurenum | Sumranwanich et al., 2022 [36] |
Sinorhizobium Agrobacterium | Toxic metals (Cu, Zn) | Medicago lupulina | Jian et al., 2019 [37] |
Bacillus Azotobacter | Toxic metals | Pisum sativum | Singh et al., 2019 [38] |
Pseudomonas Serratia | Salt stress | Triticum durum | Sohaib et al., 2020 [39] |
Kocuria Cronobacter | Salt stress | Triticum durum | Afridi et al., 2019 [40] |
Pseudomonas | Salt stress | Triticum durum | Albdaiwi et al., 2019 [41] Boumaaza, 2020 [42] |
Bacillus | Salt stress | Oryza sativa | Shultana et al., 2021 [43] |
Bacillus | Salt stress | Oryza sativa | Chauhan et al., 2019 [44] |
Glutamicibacter | Salt stress | Oryza sativa | Ji et al., 2020 [45] |
Pseudomonas Trichoderma (fungus) | Drought | Oryza sativa | Singh et al., 2020 [46] |
Enterobacter Achromobacter | Drought | Oryza sativa | Danish et al., 2019 [47] Danish et al., 2020 [48] |
Bacillus Enterobacter | Drought | Triticum aestivum Zea mays | Jochum et al., 2019 [49] |
Bacillus | Drought | Glycyrrhiza uralensis | Zhang et al., 2019 [50] |
Agrobacterium Leclercia Pseudomonas Bacillus | Drought | Triticum aestivum | Danish and Zafar-ul-Hye, 2019 [51] Zafar-ul-Hye et al., 2019 [52] |
Pseudomonas | Heat | Triticum | Ashraf et al., 2019 [53] |
Bacillus | Fungicidal toxicity and soil-borne diseases | Oryza sativa | Shen et al., 2019 [54] |
Bacillus | Fungicidal toxicity and soil-borne diseases | Arachis hypogaea | Ahmad et al., 2019 [55] |
Nostoc Anabaena | Fungicidal toxicity and soil-borne diseases | Oryza sativa | Zhou et al., 2020 [56] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rai, A.; Belkacem, M.; Assadi, I.; Bollinger, J.-C.; Elfalleh, W.; Assadi, A.A.; Amrane, A.; Mouni, L. Bacteria in Soil: Promising Bioremediation Agents in Arid and Semi-Arid Environments for Cereal Growth Enhancement. Appl. Sci. 2022, 12, 11567. https://doi.org/10.3390/app122211567
Rai A, Belkacem M, Assadi I, Bollinger J-C, Elfalleh W, Assadi AA, Amrane A, Mouni L. Bacteria in Soil: Promising Bioremediation Agents in Arid and Semi-Arid Environments for Cereal Growth Enhancement. Applied Sciences. 2022; 12(22):11567. https://doi.org/10.3390/app122211567
Chicago/Turabian StyleRai, Abdelwahab, Mohamed Belkacem, Imen Assadi, Jean-Claude Bollinger, Walid Elfalleh, Aymen Amine Assadi, Abdeltif Amrane, and Lotfi Mouni. 2022. "Bacteria in Soil: Promising Bioremediation Agents in Arid and Semi-Arid Environments for Cereal Growth Enhancement" Applied Sciences 12, no. 22: 11567. https://doi.org/10.3390/app122211567
APA StyleRai, A., Belkacem, M., Assadi, I., Bollinger, J. -C., Elfalleh, W., Assadi, A. A., Amrane, A., & Mouni, L. (2022). Bacteria in Soil: Promising Bioremediation Agents in Arid and Semi-Arid Environments for Cereal Growth Enhancement. Applied Sciences, 12(22), 11567. https://doi.org/10.3390/app122211567