Identity-Based and Leakage-Resilient Broadcast Encryption Scheme for Cloud Storage Service
Abstract
:1. Introduction
2. Related Works
2.1. Anonymous Broadcast Encryption
2.2. Leakage Resilience of IBE
2.3. Our Motivations and Contributions
3. Preliminary Knowledge
3.1. Bilinear Map
- (a)
- Computability: ,can be computed effectively.
- (b)
- Nondegeneration: .
- (c)
- Bilinearity: and;.
3.2. Minimum Entropy
3.3. Binary Extractor
3.4. General Subgroup Decision Hypothesis
4. Syntax about LR-SP-IBBE
4.1. Formalization of LR-SP-IBBE
4.2. Security Descriptions for LR-SP-IBBE
5. Specific Construction of LR-SP-IBBE
6. Safety Proof
- (1)
- For , responds with the semifunctional key. randomly chooses and generates the semifunctional private key: where and .
- (2)
- For , produces a normal private key in response.
- (3)
- For , randomly selects , , and . Then, generates a private key: , where and .
7. Performance Analysis
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mohiyuddin, A.; Javed, A.R.; Chakraborty, C.; Rizwan, M.; Shabbir, M.; Nebhen, J. Secure cloud storage for medical IoT data using adaptive neuro-fuzzy inference system. Int. J. Fuzzy Syst. 2022, 24, 1203–1215. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, J.; Xu, W.; Li, Z. Identity-based public data integrity verification scheme in cloud storage system via blockchain. J. Supercomput. 2022, 78, 8509–8530. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Y.; Chen, F.; Chen, J. An efficient identity-based provable data possession protocol with compressed cloud storage. IEEE Trans. Inf. Forensics Secur. 2022, 17, 1359–1371. [Google Scholar] [CrossRef]
- Saxena, U.R.; Alam, T. Role based access control using identity and broadcast based encryption for securing cloud data. J. Comput. Virol. Hacking 2022, 18, 171–182. [Google Scholar] [CrossRef]
- Chinnasamy, P.; Deepalakshmi, P.; Dutta, A.K.; You, J.; Joshi, G.P. Ciphertext-policy attribute-based encryption for cloud storage: Toward data privacy and authentication in AI-enabled IoT system. Mathematics 2021, 10, 68. [Google Scholar] [CrossRef]
- Xue, Y.; Xue, K.; Gai, N.; Hong, J.; Wei, D.S.L.; Hong, P. An attribute-based controlled collaborative access control scheme for public cloud storage. IEEE Trans. Inf. Forensics Secur. 2019, 14, 2927–2942. [Google Scholar] [CrossRef]
- Chen, L.; Li, J.; Lu, Y.; Zhang, Y. Adaptively secure certificate-based broadcast encryption and its application to cloud storage service. Inf. Sci. 2020, 538, 273–289. [Google Scholar] [CrossRef]
- Kumar, S.; Dasu, V.A.; Baksi, A.; Sarkar, S.; Jap, D.; Breier, J.; Bhasin, S. Side channel attack on stream ciphers: A three-step approach to state/key recovery. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022, 2022, 166–191. [Google Scholar] [CrossRef]
- Das, D.; Ghosh, S.; Raychowdhury, A.; Sen, S. EM/power side-channel attack: White-box modeling and signature attenuation countermeasures. IEEE Des. Test 2021, 38, 67–75. [Google Scholar] [CrossRef]
- Won, Y.S.; Chatterjee, S.; Jap, D.; Bhasin, S.; Basu, A. Time to leak: Cross-device timing attack on edge deep learning accelerator. In Proceedings of the 2021 International Conference on Electronics, Information, and Communication (ICEIC), Jeju, Korea, 31 January–3 February 2021. [Google Scholar]
- Chen, C.S.; Wang, T.; Tian, J. Improving timing attack on RSA-CRT via error detection and correction strategy. Inf. Sci. 2013, 232, 464–474. [Google Scholar] [CrossRef]
- Halderman, J.A.; Schoen, S.D.; Heninger, N.; Clarkson, W.; Paul, W.; Calandrino, J.A.; Feldman, A.J.; Appelbaum, J.; Felten, E.W. Lest we remember: Cold-Boot attacks on encryption keys. Commun. ACM 2009, 52, 91–98. [Google Scholar] [CrossRef]
- Lipp, M.; Schwarz, M.; Gruss, D.; Prescher, T.; Haas, W.; Horn, J.; Mangard, S.; Kocher, P.; Genkin, D.; Yarom, Y.; et al. Meltdown: Reading kernel memory from user space. Commun. ACM 2020, 63, 46–56. [Google Scholar] [CrossRef]
- Libert, B.; Paterson, K.G.; Quaglia, E.A. Anonymous broadcast encryption: Adaptive security and efficient constructions in the standard model. In Proceedings of the 15th International Conference on Practice and Theory in Public Key Cryptography, Darmstadt, Germany, 21–23 May 2012. [Google Scholar]
- Cui, H.; Mu, Y.; Guo, F. Server-aided identity-based anonymous broadcast encryption. Int. J. Secur. Netw. 2013, 8, 29–39. [Google Scholar] [CrossRef]
- Xie, L.; Ren, Y. Efficient anonymous identity-based broadcast encryption without random oracles. Int. J. Digit. Crime Forensics 2014, 6, 40–51. [Google Scholar]
- Ren, Y.; Niu, Z.; Zhang, X. Fully anonymous identity-based broadcast encryption without random oracles. Int. J. Netw. Secur. 2014, 16, 256–264. [Google Scholar]
- Mandal, M. Cryptanalysis of RNZ, an identity-based fully anonymous broadcast encryption. ICT Express 2020, 6, 316–319. [Google Scholar] [CrossRef]
- He, K.; Weng, J.; Liu, J.N.; Liu, J.K.; Liu, W.; Deng, R.H. Anonymous identity-based broadcast encryption with chosen-ciphertext security. In Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, Xi’an, China, 30 May–3 June 2016. [Google Scholar]
- Zhang, J.; Mao, J. Anonymous multi-receiver broadcast encryption scheme with strong security. Int. J. Embed. Syst. 2017, 9, 177–187. [Google Scholar] [CrossRef]
- He, K.; Weng, J.; Mao, Y.; Yuan, H. Anonymous identity-based broadcast encryption technology for smart city information system. Pers. Ubiquitous Comput. 2017, 21, 841–853. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, B.; Xia, Z.; Mu, Y.; Wang, T. Anonymous and updatable identity-based hash proof system. IEEE Syst. J. 2018, 13, 2818–2829. [Google Scholar] [CrossRef]
- Zhang, L.; Yin, H. Recipient anonymous ciphertext-policy attribute-based broadcast encryption. Int. J. Netw. Secur. 2018, 20, 168–176. [Google Scholar]
- Ming, Y.; Yuan, H. Fully secure anonymous identity based broadcast encryption with group of prime order. Int. J. Netw. Secur. 2019, 21, 7–16. [Google Scholar]
- Chen, L.; Li, J.; Zhang, Y. Adaptively secure anonymous identity-based broadcast encryption for data access control in cloud storage service. KSII Trans. Internet Inf. Syst. 2019, 13, 1523–1545. [Google Scholar]
- Mishra, P.; Verma, V. Identity based broadcast encryption scheme with shorter decryption keys for open networks. Wirel. Pers. Commun. 2020, 115, 961–969. [Google Scholar] [CrossRef]
- Chen, L.; Li, J.; Zhang, Y. Anonymous certificate-based broadcast encryption with personalized messages. IEEE Trans. Broadcast. 2020, 66, 867–881. [Google Scholar] [CrossRef]
- Mandal, M.; Nuida, K. Identity-based outsider anonymous broadcast encryption with simultaneous individual messaging. In Proceedings of the 14th International Conference on Network and System Security, Melbourne, VIC, Australia, 25–27 November 2020. [Google Scholar]
- He, K.; Liu, X.; Liu, J.N.; Liu, W. Efficient identity-based broadcast encryption scheme on lattices for the Internet of Things. Secur. Commun. Netw. 2021, 2021, 2847731. [Google Scholar] [CrossRef]
- Naor, M.; Segev, G. Public-key cryptosystems resilient to key leakage. In Proceedings of the 29th Annual International Cryptology Conference, Santa Barbara, CA, USA, 16–20 August 2009. [Google Scholar]
- Dodis, Y.; Haralambiev, K.; Lopez-Alt, A.; Wichs, D. Cryptography against continuous memory attacks. In Proceedings of the 51st Annual Symposium on Foundations of Computer Science, Las Vegas, NV, USA, 23–26 October 2010. [Google Scholar]
- Huang, M.; Yang, B.; Zhou, Y.; Hu, X. Continual leakage-resilient hedged public-key encryption. Comput. J. 2022, 65, 1574–1585. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, B.; Xia, Z.; Zhang, M.; Mu, Y. Identity-based encryption with leakage-amplified chosen-ciphertext attacks security. Theor. Comput. Sci. 2020, 809, 277–295. [Google Scholar] [CrossRef]
- Hou, H.; Yang, B.; Zhang, M.; Zhou, Y.; Huang, M. Fully secure wicked identity-based encryption resilient to continual auxiliary-inputs leakage. J. Inf. Secur. Appl. 2020, 53, 102521. [Google Scholar] [CrossRef]
- Li, J.; Yu, Q.; Zhang, Y. Identity-based broadcast encryption with continuous leakage resilience. Inf. Sci. 2018, 429, 177–193. [Google Scholar] [CrossRef]
- Tomita, T.; Ogata, W.; Kurosawa, K. Boosting CPA to CCA2 for leakage-resilient attribute-based encryption by using new QA-NIZK. IEICE Trans. Fundam. Electron. 2022, 105, 143–159. [Google Scholar] [CrossRef]
- Li, J.; Yu, Q.; Zhang, Y. Hierarchical attribute based encryption with continuous leakage-resilience. Inf. Sci. 2019, 484, 113–134. [Google Scholar] [CrossRef]
- Alawatugoda, J.; Okamoto, T. Standard model leakage-resilient authenticated key exchange using inner-product extractors. Des. Code Cryptogr. 2022, 90, 1059–1079. [Google Scholar] [CrossRef]
- Yu, Q.; Li, J.; Ji, S. Fully secure ID-based signature sheme with continuous leakage-resilience. Secur. Commun. Netw. 2022, 2022, 8220259. [Google Scholar]
- Alwen, J.; Dodis, Y.; Naor, M.; Segev, G.; Walfish, S.; Wichs, D. Public-key encryption in the bounded-retrieval model. In Proceedings of the 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Riviera, France, 30 May–3 June 2010. [Google Scholar]
- Alwen, J.; Dodis, Y.; Wichs, D. Leakage-resilient public-key cryptography in the bounded-retrieval model. In Proceedings of the 29th Annual International Cryptology Conference on Advances in Cryptology, Santa Barbara, CA, USA, 16–20 August 2009. [Google Scholar]
- Li, J.; Teng, M.; Zhang, Y.; Yu, Q. A leakage-resilient CCA-secure identity-based encryption scheme. Comput. J. 2016, 59, 1066–1075. [Google Scholar] [CrossRef]
- Chen, Y.; Luo, S.; Chen, Z. A new leakage-resilient IBE scheme in the relative leakage model. In Proceedings of the 25th Annual IFIP WG 11.3 Conference on Data and Applications Security and Privacy, Richmond, VA, USA, 11–13 July 2011. [Google Scholar]
- Sun S, F.; Gu, D.; Liu, S. Efficient chosen ciphertext secure identity-based encryption against key leakage attacks. Secur. Commun. Netw. 2016, 9, 1417–1434. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Z.; Lin, D.; Cao, Z. Generalized (identity-based) hash proof system and its applications. Secur. Commun. Netw. 2016, 9, 1698–1716. [Google Scholar] [CrossRef]
- Lewko, A.; Rouselakis, Y.; Waters, B. Achieving leakage resilience through dual system encryption. In Proceedings of the 8th Theory of Cryptography Conference on Theory of Cryptography, Providence, RI, USA, 28–30 March 2011. [Google Scholar]
- Zhou, Y.; Yang, B.; Mu, Y. Continuous leakage-resilient identity-based encryption without random oracles. Comput. J. 2018, 61, 586–600. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, M.; Zheng, D.; Lang, P.; Wu, A.; Chen, C. Efficient and secure big data storage system with leakage resilience in cloud computing. Soft Comput. 2018, 22, 7763–7772. [Google Scholar] [CrossRef]
- Gardas, B.B.; Heidari, A.; Navimipour, N.J.; Unal, M. A fuzzy-based method for objects selection in blockchain-enabled edge-IoT platforms using a hybrid multi-criteria decision-making model. Appl. Sci. 2022, 12, 8906. [Google Scholar] [CrossRef]
- Amiri, Z.; Heidari, A.; Navimipour, N.J.; Unal, M. Resilient and dependability management in distributed environments: A systematic and comprehensive literature review. Cluster Comput. 2022. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, B.; Mu, Y. Continuous leakage-resilient identity-based encryption with leakage amplification. Des. Code Cryptgr. 2019, 87, 2061–2090. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, M.; Zheng, D.; Zhang, T.; Guo, R.; Ren, F. Leakage-resilient hierarchical identity-based encryption with recipient anonymity. Int. J. Found. Comput. S. 2019, 30, 665–681. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, B.; Wang, C.; Takagi, T. Unbounded anonymous hierarchical IBE with continual-key-leakage tolerance. Secur. Commun. Netw. 2014, 7, 1974–1987. [Google Scholar] [CrossRef]
- Liu, P.; Hu, C.; Guo, S.; Wang, Y. Anonymous identity-based encryption with bounded leakage resilience. In Proceedings of the IEEE 29th International Conference on Advanced Information Networking and Applications Workshops, Gwangju, Korea, 24–27 March 2015. [Google Scholar]
- Sun, S.F.; Gu, D.; Huang, Z. Fully secure wicked identity-based encryption against key leakage attacks. Comput. J. 2015, 58, 2520–2536. [Google Scholar] [CrossRef]
- Xiong, H.; Zhang, C.; Yuen, T.H.; Zhang, E.P.; Yiu, S.M.; Qing, S. Continual leakage-resilient dynamic secret sharing in the split-state model. In Proceedings of the 14th International Conference on Information and Communications Security, Hong Kong, China, 29–31 October 2012. [Google Scholar]
- Liu, F.H.; Lysyanskaya, A. Tamper and leakage resilience in the split-state model. In Proceedings of the 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, 19–23 August 2012. [Google Scholar]
- Faonio, A.; Nielsen, J.B.; Simkin, M.; Venturi, D. Continuously non-malleable codes with split-state refresh. Theor. Comput. Sci. 2019, 759, 98–132. [Google Scholar] [CrossRef] [Green Version]
- Kanukurthi, B.; Obbattu, S.L.B.; Sekar, S. Four-state non-malleable codes with explicit constant rate. Comput. J. 2020, 33, 1044–1079. [Google Scholar] [CrossRef]
- Aggarwal, D.; Dottling, N.; Nielsen, J.B.; Obremski, M.; Purwanto, E. Continuous non-malleable codes in the 8-split-state model. In Proceedings of the 38th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Darmstadt, Germany, 19–23 May 2019. [Google Scholar]
- Waters, B. Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions. In Proceedings of the 29th Annual International Cryptology Conference on Advances in Cryptology, Santa Barbara, CA, USA, 16–20 August 2009. [Google Scholar]
- Ming, Y.; Yuan, H.; Sun, B.; Qiao, Z. Efficient identity-based anonymous broadcast encryption scheme in standard model. J. Comput. Appl. 2016, 36, 2762–2766. [Google Scholar]
- Dodis, Y.; Reyzin, L.; Smith, A. Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. SIAM J. Comput. 2008, 38, 97–139. [Google Scholar] [CrossRef] [Green Version]
- Nisan, N.; Zuckerman, D. Randomness is linear in space. J. Comput. Syst. Sci. 1996, 52, 43–52. [Google Scholar] [CrossRef]
- Boneh, D.; Goh, E.J.; Nissim, K. Evaluating 2-DNF formulas on ciphertexts. In Proceedings of the Second Theory of Cryptography Conference, Cambridge, MA, USA, 10–12 February 2005. [Google Scholar]
- Xiong, H.; Yuen, T.H.; Zhang, C.; Yiu, S.M.; He, Y.J. Leakage-resilient certificateless public key encryption. In Proceedings of the 8th ACM Symposium on Information, Computer and Communications Security, Hangzhou, China, 8 May 2013. [Google Scholar]
- Lewko, A.; Waters, B. New techniques for dual system encryption and fully secure hibe with short ciphertexts. In Proceedings of the 7th Theory of Cryptography Conference, Zurich, Switzerland, 9–11 February 2010. [Google Scholar]
- Kim, J.; Susilo, W.; Au, H.; Seberry, J. Adaptively secure identity-based broadcast encryption with a constant-sized ciphertext. IEEE Trans. Inf. Forensics Secur. 2015, 10, 679–693. [Google Scholar]
- Gentry, C. Practical identity-based encryption without random oracles. In Proceedings of the 25th International Conference on the Theory and Applications of Cryptographic Techniques, St. Petersburg, Russia, 28 May–1 June 2006. [Google Scholar]
Two Consecutive Games | The Differences of Adversary’ Advantages | Related Lemmas |
---|---|---|
and | Lemma 1 | |
and | Lemma 2 | |
and | Lemma 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Q.; Li, J.; Ji, S. Identity-Based and Leakage-Resilient Broadcast Encryption Scheme for Cloud Storage Service. Appl. Sci. 2022, 12, 11495. https://doi.org/10.3390/app122211495
Yu Q, Li J, Ji S. Identity-Based and Leakage-Resilient Broadcast Encryption Scheme for Cloud Storage Service. Applied Sciences. 2022; 12(22):11495. https://doi.org/10.3390/app122211495
Chicago/Turabian StyleYu, Qihong, Jiguo Li, and Sai Ji. 2022. "Identity-Based and Leakage-Resilient Broadcast Encryption Scheme for Cloud Storage Service" Applied Sciences 12, no. 22: 11495. https://doi.org/10.3390/app122211495
APA StyleYu, Q., Li, J., & Ji, S. (2022). Identity-Based and Leakage-Resilient Broadcast Encryption Scheme for Cloud Storage Service. Applied Sciences, 12(22), 11495. https://doi.org/10.3390/app122211495