Roles of Normal Stress, Roughness, and Slip Displacement in the Stability of Laboratory Fault in a Sandstone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Materials
2.2. Test Scheme
2.3. Stability Evaluation
2.4. Shear Stiffness
2.5. Roughness Evaluation
3. Results
3.1. Normal Stress
3.2. Roughness
3.3. Slip Displacement
4. Discussion
4.1. Normal Stress
4.2. Roughness
4.3. Slip Displacement
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brace, W.F.; Byerlee, J.D. Stick-slip as a mechanism for earthquakes. Science 1966, 153, 990–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brace, W.F. Laboratory studies of stick-slip and their application to earthquakes. Tectonophysics 1972, 14, 189–200. [Google Scholar] [CrossRef]
- Scholz, C.H. Earthquakes and friction laws. Nature 1998, 391, 37–42. [Google Scholar] [CrossRef]
- Wang, L.; Kwiatek, G.; Rybacki, E.; Bohnhoff, M.; Dresen, G. Injection-induced seismic moment release and laboratory fault slip: Implications for fluid-induced seismicity. Geophys. Res. Lett. 2020, 47, e2020GL089576. [Google Scholar] [CrossRef]
- Lei, X.L.; Su, J.R.; Wang, Z.W. Growing seismicity in the Sichuan Basin and its association with industrial activities. Sci. China-Earth Sci. 2020, 63, 1633–1660. [Google Scholar] [CrossRef]
- Deng, F.H.; Dixon, T.H.; Xie, S.R. Surface deformation and induced seismicity due to fluid injection and oil and gas extraction in western texas. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018962. [Google Scholar] [CrossRef]
- Vasco, D.W.; Alfi, M.; Hosseini, S.A.; Zhang, R.; Daley, T.; Ajo-Franklin, J.B.; Hovorka, S.D. The seismic response to injected carbon dioxide: Comparing observations to estimates based upon fluid flow modeling. J. Geophys. Res. Solid Earth 2019, 124, 6880–6907. [Google Scholar] [CrossRef] [Green Version]
- Ji, Y.; Wu, W.; Zhao, Z. Unloading-induced rock fracture activation and maximum seismic moment prediction. Eng. Geol. 2019, 262, 105352. [Google Scholar] [CrossRef]
- Tinti, E.; Scuderi, M.M.; Scognamiglio, L.; Di Stefano, G.; Marone, C.; Collettini, C. On the evolution of elastic properties during laboratory stick-slip experiments spanning the transition from slow slip to dynamic rupture. J. Geophys. Res. Solid Earth 2016, 121, 8569–8594. [Google Scholar] [CrossRef]
- Bürgmann, R. The geophysics, geology and mechanics of slow fault slip. Earth Planet. Sci. Lett. 2018, 495, 112–134. [Google Scholar] [CrossRef]
- Passelégue, F.X.; Aubry, J.; Nicolas, A.; Fondriest, M.; Deldicque, D.; Schubnel, A.; Di Toro, G. From fault creep to slow and fast earthquakes in carbonates. Geology 2019, 47, 744–748. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Wong, T.F. Effects of loading velocity, stiffness, and inertia on the dynamics of a single degree of freedom Spring-Slider System. J. Geophys. Res. Solid Earth 1991, 96, 21677–21691. [Google Scholar] [CrossRef]
- Passelègue, F.X.; Schubnel, A.; Nielsen, S.; Bhat, H.S.; Deldicque, D.; Madariaga, R. Dynamic rupture processes inferred from laboratory microearthquakes. J. Geophys. Res. Solid Earth 2016, 121, 4343–4365. [Google Scholar] [CrossRef] [Green Version]
- Segall, P.; Rubin, A.M.; Bradley, A.M.; Rice, J.R. Dilatant strengthening as a mechanism for slow slip events. J. Geophys. Res. Solid Earth 2010, 115, 1–37. [Google Scholar] [CrossRef]
- Chen, X.F.; Carpenter, B.M.; Reches, Z. Asperity failure control of stick-slip along brittle faults. Pure Appl. Geophys. 2020, 177, 3225–3242. [Google Scholar] [CrossRef] [Green Version]
- Ji, Y.; Hofmann, H.; Duan, K.; Zang, A. Laboratory experiments on fault behavior towards better understanding of injection-induced seismicity in geoenergy systems. Earth Sci. Rev. 2022, 226, 103916. [Google Scholar] [CrossRef]
- Yamashita, F.; Fukuyama, E.; Xu, S.; Kawakata, H.; Mizoguchi, K.; Takizawa, S. Two end-member earthquake preparations illuminated by foreshock activity on a meter-scale laboratory fault. Nat. Commun. 2021, 12, 4302. [Google Scholar] [CrossRef]
- Bedford, J.D.; Faulkner, D.R.; Allen, M.J.; Hirose, T. The stabilizing effect of high pore-fluid pressure along subduction megathrust faults: Evidence from friction experiments on accretionary sediments from the Nankai Trough. Earth Planet. Sci. Lett. 2021, 574, 117161. [Google Scholar] [CrossRef]
- Lei, X.L.; Li, S.N.; Liu, L.Q. Seismic b-value for foreshock AE events preceding repeated stick-slips of pre-cut faults in granite. Appl. Sci. 2018, 8, 2361. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Du, X.; Ji, Y. Prediction of the transitional normal stress of rock joints under shear. Int. J. Rock Mech. Min. Sci. 2022, 159, 105203. [Google Scholar] [CrossRef]
- Yund, R.A.; Blanpied, M.L.; Tullis, T.E.; Weeks, J.D. Amorphous material in high strain experimental fault gouges. J. Geophys. Res. Solid Earth 1990, 95, 15589–15602. [Google Scholar] [CrossRef]
- Marone, C. Earthquake science faults greased at high speed. Nature 2004, 427, 405–406. [Google Scholar] [CrossRef] [PubMed]
- Reches, Z.E.; Wilson, B.; Dewers, T.; Brune, J. Particle size and energetics of gouge from earthquake rupture zones. Nature 2005, 434, 749–752. [Google Scholar]
- Mizoguchi, K.; Hirose, T.; Shimamoto, T.; Fukuyama, E. Moisture-related weakening and strengthening of a fault activated at seismic slip rates. Geophys. Res. Lett. 2006, 33, L16319. [Google Scholar] [CrossRef]
- Scholz, C.H. Wear and gouge formation in brittle faulting. Geology 1987, 15, 493–495. [Google Scholar] [CrossRef]
- Sibson, R.H. Fault rocks and fault mechanics. J. Geol. Soc. 1977, 133, 191–213. [Google Scholar] [CrossRef]
- Engelder, J.T. Cataclasis and the generation of fault gouge. Bull. Geol. Soc. Am. 1974, 85, 1515–1522. [Google Scholar] [CrossRef]
- Leeman, J.R.; Saffer, D.M.; Scuderi, M.M.; Marone, C. Laboratory observations of slow earthquakes and the spectrum of tectonic fault slip modes. Nat. Commun. 2016, 7, 11104. [Google Scholar] [CrossRef] [Green Version]
- Scuderi, M.M.; Marone, C.; Tinti, E.; Di Stefano, G.; Collettini, C. Precursory changes in seismic velocity for the spectrum of earthquake failure modes. Nat. Geosci. 2016, 9, 695–700. [Google Scholar] [CrossRef] [Green Version]
- Leeman, J.R.; Marone, C.; Saffer, D.M. Frictional mechanics of slow earthquakes. J. Geophys. Res. Solid Earth 2018, 123, 7931–7949. [Google Scholar] [CrossRef]
- Shreedharan, S.; Bolton, D.C.; Rivière, J.; Marone, C. Preseismic fault creep and elastic wave amplitude precursors scale with lab earthquake magnitude for the continuum of tectonic failure modes. Geophys. Res. Lett. 2020, 47, e2020GL086986. [Google Scholar] [CrossRef]
- Lyu, Z.; Rivière, J.; Yang, Q.; Marone, C. On the mechanics of granular shear: The effect of normal stress and layer thickness on stick-slip properties. Tectonophysics 2019, 763, 86–99. [Google Scholar] [CrossRef]
- Mngadi, S.B.; Tsutsumi, A.; Onoe, Y.; Manzi, M.; Nakatani, M. The effect of a gouge layer on rupture propagation along brittle shear fractures in deep and high-stress mines. Int. J. Rock Mech. Min. Sci. 2020, 137, 104454. [Google Scholar] [CrossRef]
- Di Toro, G.; Han, R.; Hirose, T.; De Paola, N.; Nielsen, S.; Mizoguchi, K.; Ferri, F.; Cocco, M.; Shimamoto, T. Fault lubrication during earthquakes. Nature 2011, 471, 494–498. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.A.F.; Nielsen, S.; Di Toro, G. Strain localization and the onset of dynamic weakening in calcite fault gouge. Earth Planet. Sci. Lett. 2015, 413, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Kocharyan, G.G.; Novikov, V.A.; Ostapchuk, A.A.; Pavlov, D.V. A study of different fault slip modes governed by the gouge material composition in laboratory experiments. Geophys. J. Int. 2017, 208, 521–528. [Google Scholar] [CrossRef]
- Scuderi, M.M.; Collettini, C.; Viti, C.; Tinti, E.; Marone, C. Evolution of shear fabric in granular fault gouge from stable sliding to stick slip and implications for fault slip mode. Geology 2017, 45, 731–734. [Google Scholar] [CrossRef] [Green Version]
- Kenigsberg, A.R.; Rivière, J.; Marone, C.; Saffer, D.M. The effects of shear strain, fabric, and porosity evolution on elastic and mechanical properties of clay-rich fault gouge. J. Geophys. Res. Solid Earth 2019, 124, 10968–10982. [Google Scholar] [CrossRef]
- Hirose, T.; Shimamoto, T. Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting. J. Geophys. Res. Solid Earth 2005, 110, B05202. [Google Scholar] [CrossRef]
- Nielsen, S.; Di Toro, G.; Hirose, T.; Shimamoto, T. Frictional melt and seismic slip. J. Geophys. Res. Solid Earth 2008, 113, B01308. [Google Scholar] [CrossRef] [Green Version]
- Han, R.; Shimamoto, T.; Hirose, T.; Ree, J.-H.; Ando, J.-I. Ultralow friction of carbonate faults caused by thermal decomposition. Science 2007, 316, 878–881. [Google Scholar] [CrossRef] [PubMed]
- Han, R.; Hirose, T.; Shimamoto, T. Strong velocity weakening and powder lubrication of simulated carbonate faults at seismic slip rates. J. Geophys. Res. Solid Earth 2010, 115, B03412. [Google Scholar] [CrossRef]
- Mizoguchi, K.; Hirose, T.; Shimamoto, T.; Fukuyama, E. High-velocity frictional behavior and microstructure evolution of fault gouge obtained from Nojima fault, southwest Japan. Tectonophysics 2009, 471, 285–296. [Google Scholar] [CrossRef]
- De Paola, N.; Hirose, T.; Mitchell, T.; Di Toro, G.; Viti, C.; Shimamoto, T. Fault lubrication and earthquake propagation in thermally unstable rocks. Geology 2011, 39, 35–38. [Google Scholar] [CrossRef]
- Rice, J.R. Heating and weakening of faults during earthquake slip. J. Geophys. Res. Solid Earth 2006, 111, B05311. [Google Scholar] [CrossRef] [Green Version]
- Beeler, N.M.; Tullis, T.E.; Goldsby, D.L. Constitutive relationships and physical basis of fault strength due to flash heating. J. Geophys. Res. Solid Earth 2008, 113, B01401. [Google Scholar] [CrossRef]
- Reches, Z.; Lockner, D.A. Fault weakening and earthquake instability by powder lubrication. Nature 2010, 467, 452–456. [Google Scholar] [CrossRef]
- Noda, H.; Dunham, E.M.; Rice, J.R. Earthquake ruptures with thermal weakening and the operation of major faults at low overall stress levels. J. Geophys. Res. Solid Earth 2009, 114, B07302. [Google Scholar] [CrossRef] [Green Version]
- Brantut, N.; Schubnel, A.; Rouzaud, J.N.; Brunet, F.; Shimamoto, T. High-velocity frictional properties of a clay-bearing fault gouge and implications for earthquake mechanics. J. Geophys. Res. Solid Earth 2008, 113, B10401. [Google Scholar] [CrossRef] [Green Version]
- Yuan, F.; Prakash, V. Use of a modified torsional Kolsky bar to study frictional slip resistance in rock-analog materials at coseismic slip rates. Int. J. Solids Struct. 2008, 45, 4247–4263. [Google Scholar] [CrossRef] [Green Version]
- Wu, N.; Liang, Z.Z.; Zhang, Z.H.; Li, S.H.; Lang, Y.X. Development and verification of three-dimensional equivalent discrete fracture network modelling based on the finite element method. Eng. Geol. 2022, 306, 106759. [Google Scholar] [CrossRef]
- Wu, N.; Liang, Z.; Li, Y.; Qian, X.; Gong, B. Effect of confining stress on representative elementary volume of jointed rock masses. Geomech. Eng. 2019, 18, 627–638. [Google Scholar]
- Alejano, L.R.; Muralha, J.; Ulusay, R.; Li, C.C.; Perez-Rey, I.; Karakul, H.; Chryssanthakis, P.; Aydan, O. ISRM suggested method for determining the basic friction angle of planar rock surfaces by means of tilt tests. Rock Mech. Rock Eng. 2018, 51, 3853–3859. [Google Scholar] [CrossRef]
- Mei, C.; Barbot, S.; Wu, W. Period-multiplying cycles at the transition between stick-slip and stable sliding and implications for the parkfield period-doubling tremors. Geophys. Res. Lett. 2021, 48, e2020GL091807. [Google Scholar] [CrossRef]
- Rice, J.R.; Ruina, A.L. Stability of Steady Frictional Slipping. J. Appl. Mech. 1983, 50, 343–349. [Google Scholar] [CrossRef] [Green Version]
- Muralha, J.; Grasselli, G.; Tatone, B.; Blümel, M.; Chryssanthakis, P.; Yujing, J. ISRM suggested method for laboratory determination of the shear strength of rock joints: Revised version. Rock Mech. Rock Eng. 2014, 47, 291–302. [Google Scholar] [CrossRef]
- Shahverdiloo, M.R.; Zare, S. Studying the normal stress influential factor on rock joint stiffness using CNL direct shear test. Arab. J. Geosci. 2021, 14, 2082. [Google Scholar] [CrossRef]
- Barton, N. Review of a new shear-strength criterion for rock joints. Eng. Geol. 1973, 7, 287–332. [Google Scholar] [CrossRef]
- Barton, N.; Choubey, V. The shear strength of rock joints in theory and practice. Rock Mech. 1977, 10, 1–54. [Google Scholar] [CrossRef]
- Myers, N.O. Characterization of surface roughness. Wear 1962, 5, 182–189. [Google Scholar] [CrossRef]
- Belem, T.; Homand-Etienne, F.; Souley, M. Quantitative parameters for rock joint surface roughness. Rock Mech. Rock Eng. 2000, 33, 217–242. [Google Scholar] [CrossRef]
- Power, W.L.; Tullis, T.E.; Weeks, J.D. Roughness and wear during brittle faulting. J. Geophys. Res. Solid Earth 1988, 93, 15268–15278. [Google Scholar] [CrossRef]
Mineral | Quartz | Feldspar | Montmorillonite | Calcite | Mica |
---|---|---|---|---|---|
Content | 64.2 % | 24.4 % | 5.4 % | 4.9 % | 1.1 % |
Condition | Compressive Strength (MPa) | Tensile Strength (MPa) | Basic Friction Angle (°) [53] | Elastic Modulus (GPa) | Density (kg/m3) |
---|---|---|---|---|---|
Dry | 43.81 | 4.01 | 34.3 | 6.08 | 2388 |
Sandpaper | Roughness Parameter | Point Spacings (μm) | |||||||
---|---|---|---|---|---|---|---|---|---|
10 | 30 | 50 | 100 | 300 | 500 | 700 | 1000 | ||
#60 | Z2 | 7.673 | 2.707 | 0.906 | 0.337 | 0.185 | 0.195 | 0.182 | 0.192 |
#60 | Z2s | 97.139 | 36.529 | 9.351 | 2.846 | 1.476 | 1.656 | 1.534 | 1.786 |
#1000 | Z2 | 4.869 | 1.847 | 0.731 | 0.258 | 0.056 | 0.070 | 0.083 | 0.054 |
#1000 | Z2s | 40.431 | 20.104 | 2.945 | 3.235 | 0.232 | 0.539 | 1.036 | 0.349 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, W.; Li, Y.; Wu, X.; Tang, C. Roles of Normal Stress, Roughness, and Slip Displacement in the Stability of Laboratory Fault in a Sandstone. Appl. Sci. 2022, 12, 11434. https://doi.org/10.3390/app122211434
Sun W, Li Y, Wu X, Tang C. Roles of Normal Stress, Roughness, and Slip Displacement in the Stability of Laboratory Fault in a Sandstone. Applied Sciences. 2022; 12(22):11434. https://doi.org/10.3390/app122211434
Chicago/Turabian StyleSun, Wenming, Yingchun Li, Xiaotian Wu, and Chun’an Tang. 2022. "Roles of Normal Stress, Roughness, and Slip Displacement in the Stability of Laboratory Fault in a Sandstone" Applied Sciences 12, no. 22: 11434. https://doi.org/10.3390/app122211434
APA StyleSun, W., Li, Y., Wu, X., & Tang, C. (2022). Roles of Normal Stress, Roughness, and Slip Displacement in the Stability of Laboratory Fault in a Sandstone. Applied Sciences, 12(22), 11434. https://doi.org/10.3390/app122211434