Kernel Search for the Capacitated Vehicle Routing Problem
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Review
2.2. The Problem Formulation
- (a)
- Each route starts and ends at the depot,
- (b)
- Each customer is visited exactly once,
- (c)
- The total demand of all customers on any route must not exceed the vehicle capacity.
- MILP model of the CVRP
2.3. Kernel Search
Algorithm 1 The KS framework [21] |
Initialization phase
Improvement phase
|
Kernel Search for CVRP
Algorithm 2 The iterative improvement procedure |
|
3. Results
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dantzig, G.B.; Ramser, J.H. The truck dispatching problem. Manag. Sci. 1959, 6, 80–91. [Google Scholar] [CrossRef]
- Toth, P.; Vigo, D. Vehicle Routing: Problems, Methods and Applications, 2nd ed.; SIAM: Philadelphia, PA, USA, 2014. [Google Scholar]
- Pecin, D.; Pessoa, A.; Poggi, M.; Uchoa, E. Improved branch-cut-and-price for capacitated vehicle routing. In Integer Programming and Combinatorial Optimization; Lee, J., Vygen, J., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 393–403. [Google Scholar]
- Pecin, D.; Pessoa, A.; Poggi, M.; Uchoa, E. Improved branch-cut-and-price for capacitated vehicle routing. Math. Program. Comput. 2017, 9, 61–100. [Google Scholar] [CrossRef]
- Pessoa, A.; Sadykov, R.; Uchoa, E.; Vanderbeck, F. A generic exact solver for vehicle routing and related problems. Math. Program. 2017, 183, 483–523. [Google Scholar] [CrossRef]
- Subramanian, A.; Uchoa, E.; Ochi, L.S. A hybrid algorithm for a class of vehicle routing problems. Comput. Oper. Res. 2013, 40, 2519–2531. [Google Scholar] [CrossRef] [Green Version]
- Arnold, F.; Sórensen, K. Knowledge-guided local search for the vehicle routing problem. Comput. Oper. Res. 2019, 105, 32–46. [Google Scholar] [CrossRef]
- Accorsi, L.; Vigo, D. A fast and scalable heuristic for the solution of large-scale capacitated vehicle routing problems. Transp. Sci. 2020, 55, 832–856. [Google Scholar] [CrossRef]
- Christiaens, J.; Vanden Berghe, G. Slack induction by string removals for vehicle routing problems. Transp. Sci. 2020, 54, 417–433. [Google Scholar] [CrossRef]
- Queiroga, E.; Sadykov, R.; Uchoa, E. A POPMUSIC matheuristic for the capacitated vehicle routing problem. Comput. Oper. Res. 2021, 13, 105475. [Google Scholar] [CrossRef]
- Máximo, V.R.; Nascimento, M.C.V. A hybrid adaptive iterated local search with diversi-fication control to the capacitated vehicle routing problem. Eur. J. Oper. 2021, 294, 1108–1119. [Google Scholar] [CrossRef]
- Archetti, C.; Speranza, M.G. A survey on matheuristics for routing problems. EURO J. Comput. Optim. 2014, 2, 223–246. [Google Scholar] [CrossRef]
- Angelelli, E.; Mansini, R.; Speranza, M.G. Kernel Search: A Heuristic Framework for MILP Problems with Binary Variables; Technical Report of the Department of Electronics for Automation; University of Brescia: Brescia, Italy, 2007. [Google Scholar]
- Angelelli, E.; Mansini, R.; Speranza, M.G. Kernel search: A general heuristic for the multi-dimensional knapsack problem. Comput. Oper. Res. 2010, 37, 2017–2026. [Google Scholar] [CrossRef]
- Angelelli, E.; Mansini, R.; Speranza, M.G. Kernel search: A new heuristic framework for portfolio selection. Comput. Optim. Appl. 2012, 51, 345–361. [Google Scholar] [CrossRef]
- Guastaroba, G.; Speranza, M.G. Kernel search for the capacitated facility location problem. J. Heuristics 2012, 18, 877–917. [Google Scholar] [CrossRef]
- Filippi, C.; Guastaroba, G.; Huerta-Muñoz, D.L.; Speranza, M.G. A kernel search heuristic for a fair facility location problem. Comput. Oper. Res. 2021, 132, 105292. [Google Scholar]
- Guastaroba, G.; Speranza, M.G. Kernel search: An application to the index tracking problem. Eur. J. Oper. Res. 2012, 217, 54–68. [Google Scholar] [CrossRef]
- Filippi, C.; Guastaroba, G.; Speranza, M.G. A heuristic framework for the bi-objective enhanced index tracking problem. Omega 2016, 65, 122–137. [Google Scholar] [CrossRef] [Green Version]
- Jánošíková, Ľ. Kernel search for the capacitated p-median problem. In Proceedings of the International Scientific Conference Quantitative Methods in Economics: Multiple Criteria Decision Making XIX, Trenčianske Teplice, Slovakia, 23–25 May 2018; pp. 158–164. [Google Scholar]
- Archetti, C.; Guastaroba, G.; Huerta-Muñoz, D.L.; Speranza, M.G. A kernel search heuristic for the multivehicle inventory routing problem. Int. Trans. Oper. Res. 2021, 28, 2984–3013. [Google Scholar] [CrossRef]
- Maniezzo, V.; Boschetti, M.A.; Stützle, T. Kernel Search. In Matheuristics: Algorithms and Implementations; Springer: Cham, Switzerland, 2021; pp. 189–197. [Google Scholar]
- Laporte, G. What you should know about the vehicle routing problem. Nav. Res. Logist. 2007, 54, 811–819. [Google Scholar] [CrossRef]
- Ordóñez, F.; Sungur, I.; Dessouky, M. A Priori Performance Measures for Arc-Based Formulations of Vehicle Routing Problem. Transp. Res. Rec. 2006, 2032, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Altınel, I.K.; Öncan, T. A new enhancement of the Clarke and Wright savings heuristic for the capacitated vehicle routing problem. J. Oper. Res. Soc. 2005, 56, 954–961. [Google Scholar] [CrossRef]
- Clarke, G.; Wright, J.W. Scheduling of vehicles from a central depot to a number of delivery points. Oper. Res. 1964, 12, 568–581. [Google Scholar] [CrossRef]
- Gaskell, T.J. Bases for vehicle fleet scheduling. Oper. Res. Q. 1967, 18, 281–295. [Google Scholar] [CrossRef]
- Yellow, P. A computational modification to the savings method of vehicle scheduling. Oper. Res. Q. 1970, 21, 281–283. [Google Scholar] [CrossRef]
- Paessens, H. The savings algorithm for the vehicle routing problem. Eur. J. Oper. Res. 1988, 34, 336–344. [Google Scholar] [CrossRef]
- Battarra, M.; Golden, B.; Vigo, D. Tuning a parametric Clarke-Wright heuristic via a genetic algorithm. J. Oper. Res. Soc. 2008, 59, 1568–1572. [Google Scholar] [CrossRef]
- Corominas, A.; Garcia-Villoria, A.; Pastor, R. Fine-tuning a parametric Clarke and Wright heuristic by means of EAGH (empirically adjusted greedy heuristics). J. Oper. Res. Soc. 2010, 61, 1309–1314. [Google Scholar] [CrossRef]
- Byrne, D.; Taguchi, G. The Taguchi Approach to Parameter Design. Qual. Prog. 1987, 20, 19–26. [Google Scholar]
- Borčinová, Z.; Peško, Š. New exact iterative method for the capacitated vehicle routing problem. Commun. Sci. Lett. Univ. Žilina 2016, 18, 19–21. [Google Scholar]
- Augerat, P.; Belenguer, J.; Benavent, E.; Corbern, A.; Naddef, D.; Rinaldi, G. Computational Results with a Branch and Cut Code for the Capacitated Vehicle Routing Problem; Research Report, 949-M; Université Joseph Fourier: Grenoble, France, 1995. [Google Scholar]
Instance | KS-O | KS-CVRP1 | KS-CVRP2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
(s) | (s) | (s) | |||||||||
1. | 16 | 8 | 0.88 | 450 | 2 | 450 | 0.560 | 450 | 0.254 | 450 | 0.460 |
2. | 19 | 2 | 0.97 | 212 | 2 | 215 | 5.067 | 212 | 2.310 | 212 | 1.056 |
3. | 20 | 2 | 0.97 | 216 | 2 | 216 | 2.361 | 216 | 1.930 | 216 | 1.022 |
4. | 21 | 2 | 0.93 | 211 | 3 | 211 | 1.471 | 211 | 0.519 | 211 | 0.514 |
5. | 22 | 2 | 0.96 | 216 | 3 | 216 | 1.106 | 216 | 0.730 | 216 | 0.467 |
6. | 22 | 8 | 0.94 | 603 | 3 | 603 | 31.667 | 603 | 4.057 | 603 | 1.044 |
7. | 23 | 8 | 0.93 | 529 | 2 | 538 | 1039.707 | 547 | 823.919 | 547 | 310.329 |
8. | 40 | 5 | 0.88 | 458 | 11 | 458 | 4772.603 | 458 | 327.663 | 458 | 3.336 |
9. | 45 | 5 | 0.92 | 510 | 12 | 584 | 17,098.917 | 520 | 1803.467 | 510 | 5.205 |
Instance | CWS | KS-CVRP2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(%) | (s) | ||||||||||||
1. | 16 | 8 | 0.88 | 450 | 0.4 | 1.2 | 0.0 | 456 | 2 | 4 | 450 | 0.00 | 0.460 |
2. | 19 | 2 | 0.97 | 212 | 1.1 | 0.9 | 1.8 | 228 | 3 | 4 | 212 | 0.00 | 1.056 |
3. | 20 | 2 | 0.97 | 216 | 1.3 | 0.9 | 0.0 | 227 | 3 | 4 | 216 | 0.00 | 1.022 |
4. | 21 | 2 | 0.93 | 211 | 1.9 | 0.7 | 0.3 | 216 | 3 | 4 | 211 | 0.00 | 0.514 |
5. | 22 | 2 | 0.96 | 216 | 1.7 | 0.2 | 0.8 | 218 | 3 | 4 | 216 | 0.00 | 0.467 |
6. | 22 | 8 | 0.94 | 603 | 0.2 | 1.1 | 0.3 | 628 | 3 | 4 | 603 | 0.00 | 1.044 |
7. | 23 | 8 | 0.98 | 529 | 0.1 | 0.1 | 1.9 | 592 | 1 | 2 | 529 | 0.00 | 20.021 |
8. | 40 | 5 | 0.88 | 458 | 1.3 | 0.9 | 0.7 | 464 | 11 | 4 | 458 | 0.00 | 3.336 |
9. | 45 | 5 | 0.92 | 510 | 1.4 | 0.3 | 0.8 | 520 | 12 | 4 | 510 | 0.00 | 5.205 |
10. | 50 | 7 | 0.91 | 554 | 1.5 | 0.2 | 0.5 | 575 | 3 | 2 | 554 | 0.00 | 192.114 |
11. | 50 | 10 | 0.95 | 696 | 1.8 | 1.1 | 1.6 | 712 | 10 | 2 | 697 | 1.14 | 266.805 |
12. | 51 | 10 | 0.97 | 741 | 0.9 | 0.2 | 1.0 | 756 | 20 | 4 | 742 | 0.13 | 50.614 |
13. | 55 | 7 | 0.88 | 568 | 1.4 | 0.3 | 1.5 | 584 | 23 | 2 | 575 | 1.23 | 26.845 |
14. | 55 | 10 | 0.91 | 694 | 1.9 | 0.0 | 1.9 | 709 | 22 | 4 | 701 | 1.01 | 28.086 |
15. | 60 | 10 | 0.95 | 744 | 0.4 | 0.9 | 1.6 | 773 | 11 | 2 | 746 | 0.27 | 651.237 |
16. | 60 | 15 | 0.95 | 968 | 1.1 | 0.0 | 0.9 | 1019 | 5 | 4 | 972 | 0.41 | 356.353 |
17. | 65 | 10 | 0.94 | 792 | 1.4 | 0.4 | 0.1 | 815 | 23 | 4 | 799 | 0.88 | 92.782 |
18. | 70 | 10 | 0.97 | 827 | 1.5 | 0.0 | 1.8 | 849 | 8 | 4 | 833 | 0.73 | 84.718 |
19. | 76 | 4 | 0.97 | 593 | 1.5 | 0.3 | 0.6 | 626 | 5 | 3 | 601 | 1.35 | 2087.261 |
20. | 76 | 5 | 0.97 | 627 | 1.7 | 0.5 | 0.0 | 651 | 6 | 2 | 629 | 0.32 | 659.379 |
21. | 101 | 4 | 0.91 | 681 | 0.1 | 1.0 | 0.0 | 693 | 9 | 4 | 682 | 0.15 | 265.871 |
Instance | EIM-CVRP | KS-CVRP2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
(%) | (s) | (%) | (s) | |||||||
1. | 16 | 8 | 450 | 456 | 4 | 0.00 | 0.312 | 2 | 0.00 | 0.213 |
2. | 19 | 2 | 212 | 228 | 4 | 0.00 | 0.700 | 3 | 0.00 | 0.617 |
3. | 20 | 2 | 216 | 227 | 4 | 0.00 | 2.650 | 3 | 0.00 | 0.561 |
4. | 21 | 2 | 211 | 216 | 4 | 0.00 | 0.237 | 3 | 0.00 | 0.167 |
5. | 22 | 2 | 216 | 218 | 4 | 0.00 | 0.372 | 3 | 0.00 | 0.190 |
6. | 22 | 8 | 603 | 628 | 4 | 0.00 | 0.617 | 3 | 0.00 | 0.380 |
7. | 23 | 8 | 529 | 592 | 2 | 0.00 | 21.540 | 1 | 0.00 | 14.461 |
8. | 40 | 5 | 458 | 464 | 4 | 0.00 | 29.893 | 11 | 0.00 | 1.515 |
9. | 45 | 5 | 510 | 520 | 4 | 0.00 | 8.238 | 12 | 0.00 | 2.056 |
10. | 50 | 7 | 554 | 575 | 2 | 0.00 | 463.060 | 3 | 0.00 | 113.440 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borčinová, Z. Kernel Search for the Capacitated Vehicle Routing Problem. Appl. Sci. 2022, 12, 11421. https://doi.org/10.3390/app122211421
Borčinová Z. Kernel Search for the Capacitated Vehicle Routing Problem. Applied Sciences. 2022; 12(22):11421. https://doi.org/10.3390/app122211421
Chicago/Turabian StyleBorčinová, Zuzana. 2022. "Kernel Search for the Capacitated Vehicle Routing Problem" Applied Sciences 12, no. 22: 11421. https://doi.org/10.3390/app122211421
APA StyleBorčinová, Z. (2022). Kernel Search for the Capacitated Vehicle Routing Problem. Applied Sciences, 12(22), 11421. https://doi.org/10.3390/app122211421