Low-Noise Potentiostat Readout Circuit with a Chopper Fully Differential Difference Amplifier for Glucose Monitoring
Abstract
1. Introduction
2. Proposed Potentiostat Readout Circuit
3. Measurement Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tubiana-Rufi, N.; Riveline, J.-P.; Dardari, D. Real-time continuous glucose monitoring using Guardian®RT: From research to clinical practice. Diabetes Metab. 2007, 33, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Ko, H. A 1.2 V Low-Power CMOS Chopper-Stabilized Analog Front-End IC for Glucose Monitoring. IEEE Sensors J. 2016, 16, 6517–6518. [Google Scholar] [CrossRef]
- Zuo, L.; Islam, S.K.; Mahbub, I.; Quaiyum, F. A Low-Power 1-V Potentiostat for Glucose Sensors. IEEE Trans. Circuits Syst. II 2015, 62, 204–208. [Google Scholar] [CrossRef]
- Kwon, J.; Lee, Y.; Lee, T.; Ahn, J.-H. Aptamer-Based Field-Effect Transistor for Detection of Avian Influenza Virus in Chicken Serum. Anal. Chem. 2020, 92, 5524–5531. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, M.M.; Jullien, G.A. Current-Mirror-Based Potentiostats for Three-Electrode Amperometric Electrochemical Sensors. IEEE Trans. Circuits Syst. I Regul. Pap. 2008, 56, 1339–1348. [Google Scholar] [CrossRef]
- De Venuto, D.; Torre, M.D.; Boero, C.; Carrara, S.; De Micheli, G. A Novel Multi-Working Electrode Potentiostat for Electrochemical Detection of Metabolites. In Proceedings of the SENSORS, 2010 IEEE, Waikoloa, HI, USA, 1–4 November 2010; pp. 1572–1577. [Google Scholar]
- De Campos da Costa, J.P.; Bastos, W.B.; da Costa, P.I.; Zaghete, M.A.; Longo, E.; Carmo, J.P. Portable Laboratory Platform with Electrochemical Biosensors for Immunodiagnostic of Hepatitis C Virus. IEEE Sens. J. 2019, 19, 10701–10709. [Google Scholar] [CrossRef]
- Genov, R.; Stanacevic, M.; Naware, M.; Cauwenberghs, G.; Thakor, N. 16-Channel Integrated Potentiostat for Distributed Neurochemical Sensing. IEEE Trans. Circuits Syst. I Regul. Pap. 2006, 53, 2371–2376. [Google Scholar] [CrossRef]
- Schienle, M.; Paulus, C.; Frey, A.; Hofmann, F.; Holzapfl, B.; Schindler-Bauer, P.; Thewes, R. A fully electronic DNA sensor with 128 positions and in-pixel A/D conversion. IEEE J. Solid-State Circuits 2004, 39, 2438–2445. [Google Scholar] [CrossRef]
- Martin, S.M.; Gebara, F.H.; Strong, T.D.; Brown, R.B. A Fully Differential Potentiostat. IEEE Sens. J. 2009, 9, 135–142. [Google Scholar] [CrossRef]
- Wang, W.-S.; Kuo, W.-T.; Huang, H.-Y.; Luo, C.-H. Wide Dynamic Range CMOS Potentiostat for Amperometric Chemical Sensor. Sensors 2010, 10, 1782–1797. [Google Scholar] [CrossRef] [PubMed]
- Ghodsevali, E.; Morneau-Gamache, S.; Mathault, J.; Landari, H.; Boisselier; Boukadoum, M.; Gosselin, B.; Miled, A. Miniaturized FDDA and CMOS Based Potentiostat for Bio-Applications. Sensors 2017, 17, 810. [Google Scholar] [CrossRef] [PubMed]
- Menolfi, C.; Huang, Q. A Fully Integrated, Untrimmed CMOS Instrumentation Amplifier with Submicrovolt Offset. IEEE J. Solid-State Circuits 1999, 34, 415–420. [Google Scholar] [CrossRef]
- Monticelli, D.M. A quad CMOS single-supply op amp with rail-to-rail output swing. IEEE J. Solid-State Circuits 1986, 21, 1026–1034. [Google Scholar] [CrossRef]
- Jun, J.; Park, S.; Kang, J.; Kim, S. A 22-bit Read-Out IC with 7-ppm INL and Sub-100 μHz 1/f Corner for DC Measurement Systems. IEEE J. Solid-State Circuits 2019, 54, 3086–3096. [Google Scholar] [CrossRef]
- Anoop, A.E.; Mohan, N.M.; Guruvayurappan, K. Simulation of a multi-strip blood glucometer. In Proceedings of the TENCON 2014–2014 IEEE Region 10 Conference, Bangkok, Thailand, 22–25 December 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Aymerich, J.; Marquez, A.; Munoz-Berbel, X.; Del Campo, F.J.; Guirado, G.; Teres, L.; Serra-Graells, F.; Dei, M. A 15-μW 105-dB 1.8-Vpp Potentiostatic Delta-Sigma Modulator for Wearable Electrochemical Transducers in 65-nm CMOS Technology. IEEE Access 2020, 8, 62127–62136. [Google Scholar] [CrossRef]
- Al Mamun, K.A.; McFarlane, N. A CMOS potentiostatic glucose monitoring system for VACNF amperometric biosensors. In Proceedings of the 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal, 24–27 May 2015; pp. 477–480. [Google Scholar] [CrossRef]
- Toprak, S.; Vural, R.A.; Batur, O.Z. Low Noise High Linearity Current Readout Topologies for Potentiostat Circuitry. In Proceedings of the 2021 IEEE 32nd International Conference on Microelectronics (MIEL), Niš, Serbia, 12–14 September 2021; pp. 219–222. [Google Scholar]
- Ahmad, R.; Joshi, A.M.; Boolchandani, D.; Varma, T. Design of Potentiostat and Current Mode Read-out Amplifier for Glucose Sensing. In Proceedings of the 2021 IEEE International Symposium on Smart Electronic Systems (iSES), Jaipur, India, 20–22 December 2021; pp. 64–69. [Google Scholar]
Transistor | Size (W/L) (μm) | Transistor | Size (W/L) (μm) |
---|---|---|---|
MP1, MP2 | 60/2.5 | MN1, MN2 | 16/4 |
MP3–MP6 | 40/0.5 | MN3–MN6 | 40/0.5 |
MP7, MP8 | 20/2 | MN7, MN8 | 16/4 |
MP9, MP10 | 160/0.5 | NM9, MN10 | 80/0.5 |
MP11 | 5/2 | MN11, MN12 | 4/4 |
MP12 | 50/2 | MN13, MN14 | 20/0.5 |
MP13, MP14 | 40/0.5 | MN15 | 5/4 |
MP15 | 200/2 | MN16, MN17 | 5/4 |
MP16, MP17 | 80/2 | MP18, MP19 | 5/0.5 |
MP18, MP19 | 10/0.5 | MN20 | 4/2 |
MP20, MP21 | 12/5 | MN21, MN22 | 40/0.5 |
Component | Value |
---|---|
CF | 4.8 pF |
CCM | 412 fF |
RCM | 562.615 kΩ |
CE | 3.2 pF |
RE | 1 MΩ |
Test Strip Name | Glucose Conc. Range (mg/dL) | Resistance (kΩ) | |
---|---|---|---|
Minimum | Maximum | ||
Optimum®, Abbott | 46–393 | 4.58 | 5.64 |
Contour®, Bayer | 34–522 | 35.71 | 500 |
OneTouch Ultra®, Johnson & Johnson | 36–450 | 250 | 2000 |
This Work | IEEE MIEL 2021 [19] | IEEE iSES 2021 [20] | IEEE Access 2020 [17] | Sensors 2017 [13] | ISCAS 2015 [18] | |
---|---|---|---|---|---|---|
Process (μm) | 0.18 | 0.18 | 0.18 | 0.065 | 0.18 | 0.18 |
Architecture | FDDA | Current conveyer | Current conveyer | 1st-order delta-sigma converter | FDDA | DDA |
Chopper | Y (8 kHz) | N | N | N | N | N |
Output format | Voltage | Current | Voltage | Digital codes | Voltage | Voltage |
Supply voltage (V) | 1.8 | 1.8 | 1.5 | 1.2 | 1.8 | 1.8 |
Power consumption (μW) | 86.4 | 2300 | 124 | 15–25 (0.1–1.5 μA) | 53 | 72.36 |
Input-referred noise (pARMS) | 11.2 (50 Hz BW) (measured) | 153 (0.01~1 kHz) | N/A | 168.3 1 (1 Hz BW) (measured) | N/A | N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, G.; Nam, K.; Yoo, M.; Kang, S.; Jin, B.; Kim, K.; Son, H.; Ko, H. Low-Noise Potentiostat Readout Circuit with a Chopper Fully Differential Difference Amplifier for Glucose Monitoring. Appl. Sci. 2022, 12, 11334. https://doi.org/10.3390/app122211334
Choi G, Nam K, Yoo M, Kang S, Jin B, Kim K, Son H, Ko H. Low-Noise Potentiostat Readout Circuit with a Chopper Fully Differential Difference Amplifier for Glucose Monitoring. Applied Sciences. 2022; 12(22):11334. https://doi.org/10.3390/app122211334
Chicago/Turabian StyleChoi, Gyuri, Kyeongsik Nam, Mookyoung Yoo, Sanggyun Kang, Byeongkwan Jin, Kyounghwan Kim, Hyeoktae Son, and Hyoungho Ko. 2022. "Low-Noise Potentiostat Readout Circuit with a Chopper Fully Differential Difference Amplifier for Glucose Monitoring" Applied Sciences 12, no. 22: 11334. https://doi.org/10.3390/app122211334
APA StyleChoi, G., Nam, K., Yoo, M., Kang, S., Jin, B., Kim, K., Son, H., & Ko, H. (2022). Low-Noise Potentiostat Readout Circuit with a Chopper Fully Differential Difference Amplifier for Glucose Monitoring. Applied Sciences, 12(22), 11334. https://doi.org/10.3390/app122211334