Development of a Metasilencer Considering Flow in HVAC Systems
Abstract
1. Introduction
2. Theory
2.1. Target System
2.2. Metasilencer Design
2.3. Test Setup
3. Results and Discussion
3.1. Acoustic Analysis Results
3.2. Test Results
4. Conclusions
- The target frequency of the metasilencer was selected from the acoustic measurement results of the HVAC system, and a labyrinthine-type metasilencer considering the flow noise was proposed. The metasilencer was designed using the phase delay and generalized Snell’s law.
- The inlet of the unit cell was designed as a curved structure to minimize the occurrence of turbulence at the edges of the metasilencer. In addition, a small amount of SAM was filled inside the unit cell considering the influence of the flow noise of the HVAC system.
- Acoustic analysis confirmed that the metasilencer reduced noise over a wide frequency range and that the metasurface refracts the sound propagation direction of the target frequency.
- The sound measurement results before and after installing the metasilencer in the speaker test confirmed that noise was reduced over a wide frequency range. HVAC testing confirmed the noise reduction effect of the metasilencer in the presence of flow.
Author Contributions
Funding
Conflicts of Interest
References
- Neise, W. Review of Noise Reduction Methods for Centrifugal Fans. J. Eng. Ind. 1982, 104, 151–161. [Google Scholar] [CrossRef]
- Wang, X.; Watkins, S. Noise Refinement Solutions for Vehicle HVAC Systems. SAE Trans. 2007, 116, 1620–1628. [Google Scholar] [CrossRef]
- Singh, S.; Mohanty, A.R. HVAC Noise Control Using Natural Materials to Improve Vehicle Interior Sound Quality. Appl. Acoust. 2018, 140, 100–109. [Google Scholar] [CrossRef]
- Case, J.J.; Cuddy, W.A. Application of an Acoustical Resonator to Reduce HVAC Blower Noise. SAE Tech. Pap. 2001. [Google Scholar] [CrossRef]
- Kumar, S.; Lee, H.P. The Present and Future Role of Acoustic Metamaterials for Architectural and Urban Noise Mitigations. Acoustics 2019, 1, 590–607. [Google Scholar] [CrossRef]
- Ge, H.; Yang, M.; Ma, C.; Lu, M.H.; Chen, Y.F.; Fang, N.; Sheng, P. Breaking the Barriers: Advances in Acoustic Functional Materials. Natl. Sci. Rev. 2018, 5, 159–182. [Google Scholar] [CrossRef]
- Kumar, S.; Lee, H.P. Recent Advances in Acoustic Metamaterials for Simultaneous Sound Attenuation and Air Ventilation Performances. Crystals 2020, 10, 686. [Google Scholar] [CrossRef]
- Chen, S.; Fan, Y.; Fu, Q.; Wu, H.; Jin, Y.; Zheng, J.; Zhang, F. A Review of Tunable Acoustic Metamaterials. Appl. Sci. 2018, 8, 1480. [Google Scholar] [CrossRef]
- Zangeneh-Nejad, F.; Fleury, R. Active Times for Acoustic Metamaterials. Rev. Phys. 2019, 4, 100031. [Google Scholar] [CrossRef]
- Qi, S.; Assouar, B. Ultrathin Acoustic Metasurfaces for Reflective Wave Focusing. J. Appl. Phys. 2018, 123, 234501. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, X.; Liang, B.; Cheng, J.C.; Zhang, L. Metascreen-Based Acoustic Passive Phased Array. Phys. Rev. Appl. 2015, 4, 024003. [Google Scholar] [CrossRef]
- Lan, J.; Li, Y.; Xu, Y.; Liu, X. Manipulation of Acoustic Wavefront by Gradient Metasurface Based on Helmholtz Resonators. Sci. Rep. 2017, 7, 10587. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.F.; Zou, X.Y.; Liang, B.; Cheng, J.C. Acoustic One-Way Open Tunnel by Using Metasurface. Appl. Phys. Lett. 2015, 107, 113501. [Google Scholar] [CrossRef]
- Liu, G.S.; Zhou, Y.; Liu, M.H.; Yuan, Y.; Zou, X.Y.; Cheng, J.C. Acoustic Waveguide with Virtual Soft Boundary Based on Metamaterials. Sci. Rep. 2020, 10, 981. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Sun, H.X.; Yuan, S.Q.; Lai, Y. Switchable Omnidirectional Acoustic Insulation through Open Window Structures with Ultrathin Metasurfaces. Phys. Rev. Mater. 2019, 3, 065203. [Google Scholar] [CrossRef]
- Ge, Y.; Sun, H.X.; Yuan, S.Q.; Lai, Y. Broadband Unidirectional and Omnidirectional Bidirectional Acoustic Insulation through an Open Window Structure with a Metasurface of Ultrathin Hooklike Meta-Atoms. Appl. Phys. Lett. 2018, 112, 243502. [Google Scholar] [CrossRef]
- Wang, W.; Xie, Y.; Konneker, A.; Popa, B.I.; Cummer, S.A. Design and Demonstration of Broadband Thin Planar Diffractive Acoustic Lenses. Appl. Phys. Lett. 2014, 105, 2012–2015. [Google Scholar] [CrossRef]
- Liang, Z.; Feng, T.; Lok, S.; Liu, F.; Ng, K.B.; Chan, C.H.; Wang, J.; Han, S.; Lee, S.; Li, J. Space-Coiling Metamaterials with Double Negativity and Conical Dispersion. Sci. Rep. 2013, 3, 1614. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.L.; Zhu, Y.F.; Liang, B.; Yang, J.; Yang, J.; Cheng, J.C. Sound Insulation in a Hollow Pipe with Subwavelength Thickness. Sci. Rep. 2017, 7, 44106. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Huang, W.X.; Sung, H.J. The Reduction of Noise Induced by Flow over an Open Cavity. Int. J. Heat Fluid Flow 2020, 82, 108560. [Google Scholar] [CrossRef]
- Lee, I. Acoustic Characteristics of Perforated Dissipative and Hybrid Silencers; The Ohio State University: Columbus, OH, USA, 2005. [Google Scholar]
900 Hz | −90°/0° | 0°/90° | 30° | 31.76 mm |
1000 Hz | −90°/0° | 0°/90° | 30° | 28.58 mm |
900 Hz | 15.71 mm | 12.72 mm | 11.68 mm | 10.97 mm | 9.89 mm | 5.21 mm |
1000 Hz | 12.00 mm | 10.81 mm | 10.42 mm | 9.87 mm | 9.50 mm | 7.08 mm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Kwon, Y.; Lee, S.; Kim, J.; Park, D. Development of a Metasilencer Considering Flow in HVAC Systems. Appl. Sci. 2022, 12, 11322. https://doi.org/10.3390/app122211322
Kim H, Kwon Y, Lee S, Kim J, Park D. Development of a Metasilencer Considering Flow in HVAC Systems. Applied Sciences. 2022; 12(22):11322. https://doi.org/10.3390/app122211322
Chicago/Turabian StyleKim, Hyunsu, Yoonjung Kwon, Sangwoo Lee, Juin Kim, and Dongchul Park. 2022. "Development of a Metasilencer Considering Flow in HVAC Systems" Applied Sciences 12, no. 22: 11322. https://doi.org/10.3390/app122211322
APA StyleKim, H., Kwon, Y., Lee, S., Kim, J., & Park, D. (2022). Development of a Metasilencer Considering Flow in HVAC Systems. Applied Sciences, 12(22), 11322. https://doi.org/10.3390/app122211322