Next Article in Journal
Special Issue on Biowaste Treatment and Valorization
Previous Article in Journal
Experimental Study on Shear Behavior of Interface between Different Soil Materials and Concrete under Variable Normal Stress
Previous Article in Special Issue
Potential of Time-Resolved Serial Femtosecond Crystallography Using High Repetition Rate XFEL Sources
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

Special Issue on Latest Trends in Free Electron Lasers

by
Emiliano Principi
Elettra-Sincrotrone Trieste S.C.p.A., 34149 Basovizza, TS, Italy
Appl. Sci. 2022, 12(21), 11215; https://doi.org/10.3390/app122111215
Submission received: 28 October 2022 / Accepted: 3 November 2022 / Published: 5 November 2022
(This article belongs to the Special Issue Latest Trends in Free Electron Lasers)
In the last decade, free electron laser (FEL) sources operating from the extreme ultraviolet (EUV) up to the hard X-ray photon energy range [1,2,3] have swiftly become an invaluable experimental tool for frontier scientific research [4,5,6,7,8,9,10,11,12,13], complementing and extending the properties of synchrotron sources. Since the first operation of FLASH in 2005 [14], X-ray FEL technology has made impressive progress [15,16,17], driving a rapid worldwide diffusion of FEL large scale facilities. Following a physiological period of intense development and commissioning of the new FEL sources, today the FEL technology can be considered to be reliable for routine user experiments, thus facilitating the formation of a competent FEL users community. The progressive comprehension of the FEL sources physics, gained developing diverse FEL schemes and accompanied by promising results in many different classes of novel experiments, has allowed the FEL community to envision further steps forward [18,19,20,21,22,23].
This Special Issue encompasses outstanding contributions from variegated research groups involved in the development of FELs science and technology, highlighting new emerging and promising trends. A total of eleven papers (eight research articles, one perspective article, one review and one project report) are included in this Special Issue.
Many FEL facilities are already considering to undergo radical upgrades aimed at perfecting their FEL sources and possibly extending their operating range, for example in terms of spectral range and repetition rate. The major scope of those upgrades is to offer users a more flexible FEL source suitable for a wider variety of experiments. A thorough presentation of future developments of the FLASH FEL facility is provided by Schaper et al. [24]. The FLASH2020+ project will make available a MHz fully coherent EUV seeded FEL source. On the other hand, Chen et al. [25] explore the possibility of operating the European X-ray FEL (EuXFEL) in the sub-ångström working regime (hard X-rays) with a repetition rate of 10 Hz. Eom et al. [26] discuss recent upgrades of the Pohang Accelerator Laboratory (PAL-XFEL) involving both the FEL source (increase of the photon energy and pulse intensity, enablement of multicolor and self-seeding operation) and experimental environment (laser/pump-FEL/probe schemes, time-resolved XAS and scattering setups, liquid-jet). Liu et al. [27] outline the construction status of the Shanghai soft X-ray Free-Electron Laser facility (SXFEL). The test facility delivers 100 fs photon pulses in the water window range, while the user facility is under commissioning. Geloni et al. [28] present the results of a machine physics study carried out at the European XFEL aimed at investigating the generation of X-ray pulses in frequency mixing mode.
Promising emerging experimental techniques requiring FEL sources are also presented. De Wijn et al. [29] review the potential of serial femtosecond crystallography at high repetition rate focusing on advantages and limitations of the technique and envisioning possible developments to make it accessible to a broader user community. Blachucki et al. [30] explore the possibility of performing simultaneous X-ray absorption spectroscopy (XAS) and X-ray emission spectroscopy (XES) measurements using stochastic SASE X-ray FEL beams without monochromatization, beam splitting and seeding. In addition, Blachucki et al. [31] propose an original methodology, which they termed “X-ray chronoscopy”, for exploration of ultrafast processes in matter with attosecond time resolution. The method is based on measuring, through a THz streaking detection system, the X-ray pulse temporal profile change driven by interaction of the pulse with a medium. Another innovative FEL experimental approach is described by Maroju et al. [32], which succeeded in generating attosecond pulse trains using the beating of multiple phase-locked harmonics of the FERMI seeded FEL. The resulting attosecond waveform was monitored and characterized by independently manipulating the amplitudes and phases of the FEL harmonics.
X-ray FEL radiation is also fruitfully used to conduct experiments originally developed with other light sources, like synchrotrons and high harmonic generation (HHG) facilities, taking advantage from the peculiarities of FEL light. Tkachenko et al. [33] simulate a X-ray/pump-X-ray/probe X-ray diffraction imaging experiment, investigating ultrafast processes in condensed matter driven by exposure to intense X-ray pulse, like the nonthermal melting. Liu et al. [34] describe a proof-of-principle experiment using a THz pump and a X-ray FEL probe resonant with a magnetic sample. Both the pump and probe are generated by the same electron bunch in the FEL undulator hall, thus minimizing the relative time-jitter. THz-induced demagnetization ultrafast dynamics is monitored through time-resolved Transverse Magneto-Optical Kerr Effect (T-MOKE).
The high level of quality and innovation of the articles of this Special Issue reflects the remarkable progress made by the FEL community in recent years. The presented contributions indicate important trends in FEL research and development that can play a pivotal role in future advancement in science.

Funding

This research received no external funding.

Acknowledgments

Thanks to all the authors and peer reviewers for their valuable contributions to this Special Issue ‘Latest Trends in Free Electron Lasers’. I would also like to express my gratitude to all the staff and people involved in this Special Issue.

Conflicts of Interest

The author declares no conflict of interest.

References

  1. Murphy, J.; Pellegrini, C. Free electron lasers for the XUV spectral region. Nucl. Instrum. Methods Phys. Res. Sect. A 1985, 237, 159–167. [Google Scholar] [CrossRef] [Green Version]
  2. Huang, Z.; Kim, K. Review of X-ray free-electron laser theory. Phys. Rev. Spec. Top. Accel Beams 2007, 10, 34801. [Google Scholar] [CrossRef]
  3. Pellegrini, C. X-ray free-electron lasers: From dreams to reality. Phys. Scr. 2017, 2016, 014004. [Google Scholar] [CrossRef]
  4. Chapman, H.N.; Barty, A.; Bogan, M.J.; Boutet, S.; Frank, M.; Hau-Riege, S.P.; Marchesini, S.; Woods, B.W.; Bajt, S.; Benner, W.H.; et al. Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nat. Phys. 2006, 2, 839–843. [Google Scholar] [CrossRef] [Green Version]
  5. Nagler, B.; Zastrau, U.; Faustlin, R.R.; Vinko, S.M.; Whitcher, T.; Nelson, A.J.; Sobierajski, R.; Krzywinski, J.; Chalupsky, J.; Abreu, E.; et al. Turning solid aluminium transparent by intense soft X-ray photoionization. Nat. Phys. 2009, 5, 693–696. [Google Scholar] [CrossRef]
  6. Berrah, N.; Bozek, J.; Costello, J.; Dusterer, S.; Fang, L.; Feldhaus, J.; Fukuzawa, H.; Hoener, M.; Jiang, Y.; Johnsson, P.; et al. Non-linear processes in the interaction of atoms and molecules with intense EUV and X-ray fields from SASE free electron lasers (FELs). J. Mod. Opt. 2010, 57, 1015–1040. [Google Scholar] [CrossRef]
  7. Barends, T.R.M.; Foucar, L.; Botha, S.; Doak, R.B.; Shoeman, R.L.; Nass, K.; Koglin, J.E.; Williams, G.J.; Boutet, S.; Messerschmidt, M.; et al. De novo protein crystal structure determination from X-ray free-electron laser data. Nature 2014, 505, 244–247. [Google Scholar] [CrossRef]
  8. Schlichting, I. Serial femtosecond crystallography: The first five years. IUCrJ 2015, 2, 246–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  9. Bencivenga, F.; Cucini, R.; Capotondi, F.; Battistoni, A.; Mincigrucci, R.; Giangrisostomi, E.; Gessini, A.; Manfredda, M.; Nikolov, I.P.; Pedersoli, E.; et al. Four-wave mixing experiments with extreme ultraviolet transient gratings. Nature 2015, 520, 205–208. [Google Scholar] [CrossRef] [Green Version]
  10. Prince, K.C.; Allaria, E.; Callegari, C.; Cucini, R.; De Ninno, G.; Di Mitri, S.; Diviacco, B.; Ferrari, E.; Finetti, P.; Gauthier, D.; et al. Coherent control with a short-wavelength free-electron laser. Nat. Photonics 2016, 10, 176–179. [Google Scholar] [CrossRef]
  11. Ribic, P.R.; Rosner, B.; Gauthier, D.; Allaria, E.; Doring, F.; Foglia, L.; Giannessi, L.; Mahne, N.; Manfredda, M.; Masciovecchio, C.; et al. Extreme-ultraviolet vortices from a free-electron laser. Phys. Rev. X 2017, 7, 31036. [Google Scholar] [CrossRef] [Green Version]
  12. Lam, R.K.; Raj, S.L.; Pascal, T.A.; Pemmaraju, C.D.; Foglia, L.; Simoncig, A.; Fabris, N.; Miotti, P.; Hull, C.J.; Rizzuto, A.M.; et al. Soft X-Ray Second Harmonic Generation as an Interfacial Probe. Phys. Rev. Lett. 2018, 120, 023901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  13. Maroju, P.K.; Grazioli, C.; Di Fraia, M.; Moioli, M.; Ertel, D.; Ahmadi, H.; Plekan, O.; Finetti, P.; Allaria, E.; Giannessi, L.; et al. Attosecond pulse shaping using a seeded free-electron laser. Nature 2020, 578, 386–391. [Google Scholar] [CrossRef] [PubMed]
  14. Ayvazyan, V.; Baboi, N.; Bahr, J.; Balandin, V.; Beutner, B.; Brandt, A.; Bohnet, I.; Bolzmann, A.; Brinkmann, R.; Brovko, O.I.; et al. First operation of a free-electron laser generating GW power radiation at 32 nm wavelength. Eur. Phys. J. D-At. Mol. Opt. Plasma Phys. 2006, 37, 297–303. [Google Scholar] [CrossRef]
  15. Ackermann, W.; Asova, G.; Ayvazyan, V.; Azima, A.; Baboi, N.; Bahr, J.; Balandin, V.; Beutner, B.; Brandt, A.; Bolzmann, A.; et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photonics 2007, 1, 336–342. [Google Scholar] [CrossRef]
  16. Emma, P.; Akre, R.; Arthur, J.; Bionta, R.; Bostedt, C.; Bozek, J.; Brachmann, A.; Bucksbaum, P.; Coffee, R.; Decker, F.; et al. First lasing and operation of an angstrom-wavelength free-electron laser. Nat. Photonics 2010, 4, 641–647. [Google Scholar] [CrossRef]
  17. Ribic, P.R.; Margaritondo, G. Status and prospects of X-ray free-electron lasers (X-FELs): A simple presentation. J. Phys. D Appl. Phys. 2012, 45, 213001. [Google Scholar] [CrossRef]
  18. Bucksbaum, P.H.; Berrah, N. Brighter and faster: The promise and challenge of the X-ray free-electron laser. Phys. Today 2015, 68, 26–32. [Google Scholar] [CrossRef] [Green Version]
  19. Nilsson, A.; LaRue, J.; Öberg, H.; Ogasawara, H.; Dell’Angela, M.; Beye, M.; Öström, H.; Gladh, J.; Norskov, J.; Wurth, W.; et al. Catalysis in real time using X-ray lasers. Chem. Phys. Lett. 2017, 675, 145–173. [Google Scholar] [CrossRef]
  20. Young, L.; Ueda, K.; Guhr, M.; Bucksbaum, P.H.; Simon, M.; Mukamel, S.; Rohringer, N.; Prince, K.C.; Masciovecchio, C.; Meyer, M.; et al. Roadmap of ultrafast X-ray atomic and molecular physics. J. Phys. B At. Mol. Opt. Phys. 2018, 51, 032003. [Google Scholar] [CrossRef]
  21. Coffee, R.N.; Cryan, J.P.; Duris, J.; Helml, W.; Li, S.; Marinelli, A. Development of ultrafast capabilities for X-ray free-electron lasers at the linac coherent light source. Philos. Trans. R. Soc. A 2019, 377, 20180386. [Google Scholar] [CrossRef] [Green Version]
  22. Rebernik Ribic, P.; Abrami, A.; Badano, L.; Bossi, M.; Braun, H.; Bruchon, N.; Capotondi, F.; Castronovo, D.; Cautero, M.; Cinquegrana, P.; et al. Coherent soft X-ray pulses from an echo-enabled harmonic generation free-electron laser. Nat. Photonics 2019, 13, 555–561. [Google Scholar] [CrossRef] [Green Version]
  23. Huang, N.; Deng, H.; Liu, B.; Wang, D.; Zhao, Z. Features and futures of X-ray free-electron lasers. Innovation 2021, 2, 100097. [Google Scholar] [CrossRef]
  24. Schaper, L.; Ackermann, S.; Allaria, E.; Amstutz, P.; Baev, K.; Beye, M.; Gerth, C.; Hartl, I.; Hillert, W.; Honkavaara, K.; et al. Flexible and Coherent Soft X-ray Pulses at High Repetition Rate: Current Research and Perspectives. Appl. Sci. 2021, 11, 9729. [Google Scholar] [CrossRef]
  25. Chen, Y.; Brinker, F.; Decking, W.; Scholz, M.; Winkelmann, L. Perspectives towards Sub-Angstroem Working Regime of the European X-ray Free-Electron Laser with Low-Emittance Electron Beams. Appl. Sci. 2021, 11, 10768. [Google Scholar] [CrossRef]
  26. Eom, I.; Chun, S.H.; Lee, J.H.; Nam, D.; Ma, R.; Park, J.; Park, S.; Park, S.H.; Yang, H.; Nam, I.; et al. Recent Progress of the PAL-XFEL. Appl. Sci. 2022, 12, 1010. [Google Scholar] [CrossRef]
  27. Liu, B.; Feng, C.; Gu, D.; Gao, F.; Deng, H.; Zhang, M.; Sun, S.; Chen, S.; Zhang, W.; Fang, W.; et al. The SXFEL Upgrade: From Test Facility to User Facility. Appl. Sci. 2022, 12, 176. [Google Scholar] [CrossRef]
  28. Geloni, G.; Brinker, F.; Decking, W.; Grunert, J.; Guetg, M.; Maltezopoulos, T.; Noelle, D.; Serkez, S.; Tomin, S.; Yurkov, M.; et al. Frequency-Mixing Lasing Mode at European XFEL. Appl. Sci. 2021, 11, 8495. [Google Scholar] [CrossRef]
  29. de Wijn, R.; Melo, D.V.M.; Koua, F.H.M.; Mancuso, A.P. Potential of Time-Resolved Serial Femtosecond Crystallography Using High Repetition Rate XFEL Sources. Appl. Sci. 2022, 12, 2551. [Google Scholar] [CrossRef]
  30. Blachucki, W.; Kayser, Y.; Wach, A.; Fanselow, R.; Milne, C.; Sa, J.; Szlachetko, J. Resonant X-ray Emission Spectroscopy with a SASE Beam. Appl. Sci. 2021, 11, 8775. [Google Scholar] [CrossRef]
  31. Blachucki, W.; Wach, A.; Czapla-Masztafiak, J.; Delcey, M.; Arrell, C.; Fanselow, R.; Juranic, P.; Lundberg, M.; Milne, C.; Sa, J.; et al. Approaching the Attosecond Frontier of Dynamics in Matter with the Concept of X-ray Chronoscopy. Appl. Sci. 2022, 12, 1721. [Google Scholar] [CrossRef]
  32. Maroju, P.K.; Grazioli, C.; Di Fraia, M.; Moioli, M.; Ertel, D.; Ahmadi, H.; Plekan, O.; Finetti, P.; Allaria, E.; Giannessi, L.; et al. Complex Attosecond Waveform Synthesis at FEL FERMI. Appl. Sci. 2021, 11, 9791. [Google Scholar] [CrossRef]
  33. Tkachenko, V.; Abdullah, M.M.; Jurek, Z.; Medvedev, N.; Lipp, V.; Makita, M.; Ziaja, B. Limitations of Structural Insight into Ultrafast Melting of Solid Materials with X-ray Diffraction Imaging. Appl. Sci. 2021, 11, 5157. [Google Scholar] [CrossRef]
  34. Liu, X.; Jal, E.; Delaunay, R.; Jarrier, R.; Chiuzbaian, G.S.; Malinowski, G.; Golz, T.; Zapolnova, E.; Pan, R.; Stojanovic, N.; et al. Investigating Coherent Magnetization Control with Ultrashort THz Pulses. Appl. Sci. 2022, 12, 1323. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Principi, E. Special Issue on Latest Trends in Free Electron Lasers. Appl. Sci. 2022, 12, 11215. https://doi.org/10.3390/app122111215

AMA Style

Principi E. Special Issue on Latest Trends in Free Electron Lasers. Applied Sciences. 2022; 12(21):11215. https://doi.org/10.3390/app122111215

Chicago/Turabian Style

Principi, Emiliano. 2022. "Special Issue on Latest Trends in Free Electron Lasers" Applied Sciences 12, no. 21: 11215. https://doi.org/10.3390/app122111215

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop