Characterization and Reactivity of Natural Pozzolans from Guatemala
Abstract
:1. Introduction
2. Materials, Equipment, and Methods
2.1. Materials
2.2. Equipment
2.3. Methods
3. Results and Discussion
3.1. Physico-Chemical Characterization of Volcanic Pozzolans (VPs)
3.2. Pozzolanic Activity
3.2.1. Electrical Conductivity Test
- Co:
- Initial electrical conductivity of the calcium hydroxide suspension before adding pozzolan;
- Ct:
- Electrical conductivity value measured in the CH/P suspension at time t;
- Cpuz:
- Electrical conductivity of the water/pozzolan suspension (0.0:10.0 mixture).
3.2.2. Pozzolanicity Test (Frattini)
3.2.3. Thermogravimetric Analysis
- CHO:
- the initial amount of calcium hydroxide present in the paste;
- CHP:
- the amount of calcium hydroxide present in the CH/VP paste for a given curing time.
- H:
- loss of mass due to the calcium hydroxide dehydroxylation present in the paste;
- PMH:
- water molecular weight;
- PMCH:
- calcium hydroxide molecular weight.
- PT:
- the total percentage of mass loss;
- PCH:
- percentage of mass loss due to lime dehydroxylation.
- CHC:
- the amount of CH in the control pastes for a given curing time;
- CHP:
- the amount of CH present in the paste with the volcanic pozzolan at the same curing time;
- C%:
- the proportion of cement present in the paste (expressed per unit).
3.3. Properties of Mortars: PC/VP Systems’ Workability and Compressive Strength
4. Conclusions
- Chemically speaking, both VPs (T and R) were aluminosilicate-based in nature, with contents of potentially reactive acid oxides (SiO2, Al2O3, and Fe2O3) exceeding 85%, and their resulting LOI was acceptable (<5%). However, low reactivity was determined because a large part of the pozzolan was insoluble in acid and basic media (>40%);
- X-ray diffraction analysis confirmed the presence of not only the amorphous phase, but also crystalline phases, such as quartz, tremolite, or albite;
- The electrical conductivity measurements showed low pozzolanic reactivity, which, in this case, resulted in sample T having slightly higher reactivity than sample R;
- The Frattini test showed that the developed systems containing pozzolan at the 25–55% substitution levels could be labeled as CEM IV cements;
- The TGA confirmed the pozzolanic activity of VP: in the cement pastes, VP acted as a filler and yielded negative fixed portlandite values at early curing time. At the long-term curing time (90 days), the fixed portlandite values were positive and came close to 5–6%. The pozzolanic reactivity was enhanced in the hydrated lime pastes, mainly for the 40 °C curing temperature;
- For mortars, the workability decreased for the VP-containing systems. This behavior was due to the irregular-shaped pozzolan particles;
- The compressive strengths of the mortars containing 15–35% VP do not reach those in the control mortars. However, at 90 days, the pozzolanic effect is evidenced compared to LF. No significant differences appear between samples R and T.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Available online: https://oec.world (accessed on 1 January 2020).
- Raventós, P.; Zolezzi, S. Cement in Central America: Global players in a local industry. J. Bus. Res. 2016, 69, 388–394. [Google Scholar] [CrossRef]
- Torres, S.; García, E.; Velásquez, L.; Díaz, R.; Martirena, F. Production of limestone-calcined clay cement in Guatemala. In Proceedings of the International Conference of Sustainable Production and Use of Cement and Concrete, Dalian, China, 20–23 September 2019; pp. 85–92. [Google Scholar] [CrossRef]
- ASTM C618-19; Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. American Society for Testing and Materials: West Conshohocken, PA, USA, 2019.
- Pacheco Torgal, F.; Jalali, S. Binders and concretes. In Eco-efficient Construction and Building Materials; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Celik, K.; Jackson, M.D.; Mancio, M.; Meral, C.; Emwas, A.-H.; Mehta, P.K.; Monteiro, P.J.M. High-volume natural volcanic pozzolan and limestone powder as partial replacements for portland cement in self-compacting and sustainable concrete. Cem. Concr. Compos. 2019, 45, 136–147. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.; Mohaisen, K.O.; Adekunle, S.K.; Al-Dulaijan, S.U.; Maslehuddin, M. Influence of admixing natural pozzolan as partial replacement of cement and microsilica in UHPC mixtures. Constr. Build. Mater. 2019, 198, 437–444. [Google Scholar] [CrossRef]
- Díaz-Loya, I.; Juenger, M.; Seraj, S.; Minkara, R. Extending supplementary cementetitious material resources: Reclaimed and remediated fly ash and natural pozzolans. Cem. Concr. Compos. 2019, 101, 44–51. [Google Scholar] [CrossRef]
- Costa, D.; Quattrone, M.; Souza, J.F.T.; Punhagui, K.R.G.; Pacca, S.A.; John, V.M. Potential CO2 reduction and uptake due to industrialization and efficient cement use in Brazil by 2050. J. Ind. Ecol. 2021, 25, 344–358. [Google Scholar] [CrossRef]
- UNE-EN 197-1; Cement. Part I: Composition, Specifications and Conformity Criteria for Common Cements. AENOR: Madrid, Spain, 2011.
- Al-Fadala, S.; Chakkamalayath, J.; Al-Bahar, A.; Al-Aibini, A.; Ahmed, S. Significance of performance based specifications in the qualification and characterization of blended cement using volcanic ash. Const. Build. Mater. 2017, 144, 532–540. [Google Scholar] [CrossRef]
- Játiva, A.; Ruales, E.; Etxeberria, M. Volcanic ash as a sustainable binder material: An extensive review. Materials 2021, 14, 1302. [Google Scholar] [CrossRef]
- Lemougna, P.N.; Wang, K.-T.; Tang, Q.; Nzeukou, A.N.; Billong, N.; Melo, U.C.; Cui, X.M. Review on the use of volcanic ashes for engineering applications. Resour. Conserv. Recycl. 2018, 137, 177–190. [Google Scholar] [CrossRef]
- Wilson, W.; Rivera-Torres, J.M.; Sorelli, L.; Durán-Herrera, A.; Tagnit-Hamou, A. The micromechanical signature of high-volume natural pozzolan concrete by combines statistical nanoindentation and SEM-EDS analyses. Cem. Concr. Res. 2017, 91, 1–12. [Google Scholar] [CrossRef]
- Hossain, K.M.A.; Lachemi, M. Fresh, mechanical, and durability characteristics of self-consolidating concrete incorporating volcanic ash. J. Mater. Civ. Eng. 2010, 22, 651–657. [Google Scholar] [CrossRef]
- Contrafatto, L. Recycled Etna volcanic ash for cement, mortar and concrete manufacturing. Const. Build. Mater. 2017, 151, 704–713. [Google Scholar] [CrossRef]
- Zeyad, A.M.; Magbool, H.M.; Amran, M.; Mijarsh, M.J.A.; Almalki, A. Performance of high-strenght green concrete under the influence of curing methods, volcanic pumice dust, and hot weather. Arch. Civ. Mech. Eng. 2022, 22, 134. [Google Scholar] [CrossRef]
- Djon, L.; Ndjock, B.I.; Elimbi, A.; Cyr, M. Rational utilization of volcanic ashes based on factors affecting their alkaline activation. J. Non-Cryst. Solids. 2017, 463, 31–39. [Google Scholar] [CrossRef]
- Almalkawi, A.T.; Hamadna, S.; Soroushian, P. One-part alkali activated cement based volcanic pumice. Const. Build. Mater. 2017, 152, 367–374. [Google Scholar] [CrossRef]
- Adewumi, A.A.; Ariffin, M.A.M.; Yusuf, M.O.; Maslehuddin, M.; Ismail, M. Effect of sodium hydroxide concentration on strength and microstructure of alkali-activated natural pozzolan and limestone powder mortar. Const. Build. Mater. 2021, 271, 121530. [Google Scholar] [CrossRef]
- Bohnenberger, O.H. Los focos eruptivos cuaternarios de Guatemala. Inst. Centroam. Investig. Y Tecnol. Ind. Guatemala 1969, 1960, 23–24. [Google Scholar]
- Quiñonez, F.J.; Rosales, V.R. Evaluación Física de Muestras de Materiales Volcánicos de Guatemala para Uso en la Producción de Aglomerantes. Elev. LACCEI Lat. Am. Caribb. Conf. Eng. Technol. 2013, 30, 1–2. [Google Scholar]
- UNE-EN 196-1; Methods of Testing Cement. Part 1. Determination of Strength. AENOR: Madrid, Spain, 2018.
- UNE-EN196-2; Methods of Testing Cement. Part 2: Chemical Analysis of Cement. AENOR: Madrid, Spain, 1996.
- Tashima, M.M.; Soriano, L.; Monzó, J.; Borrachero, M.V.; Akasaki, J.L.; Payá, J. New method to assess the pozzolanic reactivity of mineral admixtures by means of pH and electrical conductivity measurements in lime: Pozzolan suspensions. Mater. Constr. 2014, 64, e032. [Google Scholar] [CrossRef]
- UNE-EN196-5; Methods of testing cement. Part 5: Pozzolanicity test for pozzolanic cement. AENOR: Madrid, Spain, 2011.
- UNE-EN1015-3; Methods of Test for Mortar for Masonry. Part 3: Determination of Consistence of Fresh Mortar (by Flow Table). AENOR: Madrid, Spain, 2000.
- Robayo-Salazar, R.A.; Mejía de Gutiérrez, R. Natural volcanic pozzolans as an available raw material for alkali-activated materials in the foreseeable future: A review. Const. Build. Mater. 2018, 189, 109–118. [Google Scholar] [CrossRef]
- Pavlidou, E. Systematic analysis of natural pozzolans from Greece suitable for repair mortars. J. Therm. Anal. Calorim. 2012, 108, 671–675. [Google Scholar] [CrossRef]
- Estifanos, S.; Abay, A.; Hagos, M.; Mebrahtu, G. Assessing the aptitude of vesicular volcanic rocks as pozzolanic sources for supplementary cementitious materials. Bull. Eng. Geol. Environ. 2019, 78, 1607–1616. [Google Scholar] [CrossRef]
- Bakolas, A.; Aggelakopoulou, E. Pozzolanic activity of natural pozzolan-lime pastes and physicomechanical characteristics. J. Therm. Anal. Calorim. 2019, 135, 2953–2961. [Google Scholar] [CrossRef]
- Payá, J.; Monzó, J.; Borrachero, M.V.; Velázquez, S. Evaluation of the pozzolanic activity of fluid catalytic cracking catalyst residue (FC3R). Thermogravimetric analysis studies on FC3R-Porland cement pastes. Cem. Concr. Res. 2003, 33, 603–609. [Google Scholar] [CrossRef]
- Soriano, L.; Payá, J.; Monzó, J.; Borrachero, M.V.; Tashima, M.M. High strength mortars using ordinary Portland cement-fly ash-fluid catalytic cracking catalyst residue ternary system (OPC/FA/FCC). Const. Build. Mater. 2016, 106, 228–235. [Google Scholar] [CrossRef] [Green Version]
- Payá, J.; Monzó, J.; Borrachero, M.V.; Peris, E.; Gonzáles-López, E. Mechanical treatments of fly ashes. Part III: Studies on strength development of ground fly ashes (GFA)—Cement mortars. Cem. Concr. Res. 1997, 27, 1365–1377. [Google Scholar] [CrossRef]
- Yildirim, G.; Dundar, B.; Alam, B.; Yaman, I.O.; Sahmaran, M. Role of nanosilica on the early-age performance of natural pozzolan-based blended cement. ACI Mater. J. 2018, 115, 969–980. [Google Scholar] [CrossRef]
Cement (g) | Type of Pozzolan | Pozzolan (g) | Water (g) | Sand (g) | |
---|---|---|---|---|---|
CEM II | 450.0 | - | - | 211.5 | 1350 |
CEM II + 15%T | 382.5 | T | 67.5 | 211.5 | 1350 |
CEM II + 15%R | 382.5 | R | 67.5 | 211.5 | 1350 |
CEM II + 25%T | 337.5 | T | 112.5 | 211.5 | 1350 |
CEM II + 25%R | 337.5 | R | 112.5 | 211.5 | 1350 |
CEM II + 35%T | 292.5 | T | 157.5 | 211.5 | 1350 |
CEM II + 35%R | 292.5 | R | 157.5 | 211.5 | 1350 |
Cement (g) | Type of Admixture | Admixture (g) | Water (g) | Sand (g) | |
---|---|---|---|---|---|
CEM II | 450.0 | - | - | 238.5 | 1350 |
450.0 | - | - | 225.0 | 1350 | |
450.0 | - | - | 211.5 | 1350 | |
450.0 | - | - | 198.0 | 1350 | |
450.0 | - | - | 184.5 | 1350 | |
CEM II + 25%X | 337.5 | T, R, or LF | 112.5 | 238.5 | 1350 |
337.5 | T, R, or LF | 112.5 | 225.0 | 1350 | |
337.5 | T, R, or LF | 112.5 | 211.5 | 1350 | |
337.5 | T, R, or LF | 112.5 | 198.0 | 1350 | |
337.5 | T, R, or LF | 112.5 | 184.5 | 1350 |
Pozzolan (VP) | Dmean | Parameters | ||
---|---|---|---|---|
d (0,9) | d (0,5) | d (0,1) | ||
T | 24.66 µm | 59.41 µm | 16.63 µm | 2.31 µm |
R | 28.44 µm | 68.58 µm | 18.62 µm | 2.62 µm |
MATERIAL | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | K2O | Na2O | Others | LOI * | IR |
---|---|---|---|---|---|---|---|---|---|---|---|
T | 70.49 | 13.57 | 1.83 | 1.82 | 0.50 | 0.12 | 4.02 | 3.35 | 0.94 | 3.37 | 40.80 |
R | 72.06 | 12.67 | 1.14 | 1.41 | 0.40 | 0.19 | 4.45 | 3.68 | 0.69 | 3.33 | 42.25 |
CEM II/A-L | 19.71 | 3.82 | 4.25 | 59.70 | 0.88 | 4.09 | 0.86 | - | 0.90 | 5.80 | - |
Lime:Pozzolan | 0.5:9.5 | 1.0:9.0 | 1.5:8.5 | 2.0:8.0 | 2.5:7.5 | 3.0:7.0 |
---|---|---|---|---|---|---|
T | 94.04 | 79.54 | 63.46 | 47.96 | 16.29 | 8.74 |
R | 93.01 | 79.75 | 61.50 | 32.78 | 21.77 | 10.77 |
Sample | Total Loss | Ca(OH)2 Loss | CHP | Fixed Lime | H2O in Hydrates (PH) |
---|---|---|---|---|---|
(%) | |||||
T 20 °C 7d | 7.06 | 5.23 | 21.51 | 31.28 | 1.83 |
T 40 °C 7d | 10.53 | 3.57 | 14.70 | 53.04 | 6.96 |
T 20 °C 28d | 10.32 | 4.10 | 16.88 | 46.09 | 6.22 |
T 40 °C 28d | 11.55 | 1.39 | 5.72 | 81.73 | 10.16 |
T 20 °C 90d | 11.84 | 2.79 | 11.47 | 63.35 | 9.05 |
T 40 °C 90d | 14.88 | 1.24 | 5.12 | 83.65 | 13.64 |
R 20 °C 7d | 9.95 | 5.99 | 24.65 | 21.25 | 3.96 |
R 40 °C 7d | 10.17 | 3.22 | 13.22 | 57.75 | 6.95 |
R 20 °C 28d | 10.62 | 4.09 | 16.82 | 46.25 | 6.53 |
R 40 °C 28d | 15.16 | 1.40 | 5.75 | 81.61 | 13.76 |
R 20 °C 90d | 12.58 | 2.83 | 11.64 | 62.81 | 9.75 |
R 40 °C 90d | 18.16 | 1.23 | 5.05 | 83.87 | 16.94 |
Sample | Total Loss | Ca(OH)2 Loss | CHP | Fixed Lime | H2O Hydrates |
---|---|---|---|---|---|
(%) | |||||
Control 28d | 18.09 | 2.67 | 10.97 | - | 15.42 |
25% T 28d | 15.92 | 2.03 | 8.36 | −1.68 | 13.88 |
25% R 28d | 16.54 | 2.07 | 8.52 | −3.65 | 14.47 |
Control 90d | 18.43 | 2.69 | 11.06 | - | 15.74 |
25% T 90d | 17.21 | 1.92 | 7.89 | 4.87 | 15.29 |
25% R 90d | 17.56 | 1.89 | 7.78 | 6.23 | 15.67 |
(%) | Mortar | Compressive Strength (MPa) | ||
---|---|---|---|---|
Replacement | 28 Days | 90 Days | 180 Days | |
0% | Control | 45.86 ± 1.33 | 55.28 ± 0.40 | 59.57 ± 2.49 |
15% | T | 39.81 ± 1.52 | 48.50 ± 1.59 | 55.01 ± 0.62 |
R | 40.99 ± 0.67 | 49.34 ± 1.36 | 55.43 ± 0.98 | |
25% | T | 36.94 ± 0.59 | 47.58 ± 1.50 | 53.21 ± 1.00 |
R | 36.10 ± 1.00 | 46.82 ± 1.13 | 52.68 ± 2.80 | |
35% | T | 31.77 ± 1.49 | 41.19 ± 0.70 | 45.98 ± 1.95 |
R | 32.85 ± 0.58 | 40.62 ± 0.44 | 47.35 ± 0.76 |
% | Mortar | SG | ||
---|---|---|---|---|
Replacement | 28 Days | 90 Days | 180 Days | |
- | Control | - | - | - |
15% | T | 2.1% | 3.2% | 8.6% |
R | 5.2% | 5.0% | 9.5% | |
25% | T | 7.4% | 14.8% | 19.1% |
R | 5.0% | 12.9% | 17.9% | |
35% | T | 6.6% | 14.6% | 18.7% |
R | 10.2% | 13.0% | 22.3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sierra, O.M.; Payá, J.; Monzó, J.; Borrachero, M.V.; Soriano, L.; Quiñonez, J. Characterization and Reactivity of Natural Pozzolans from Guatemala. Appl. Sci. 2022, 12, 11145. https://doi.org/10.3390/app122111145
Sierra OM, Payá J, Monzó J, Borrachero MV, Soriano L, Quiñonez J. Characterization and Reactivity of Natural Pozzolans from Guatemala. Applied Sciences. 2022; 12(21):11145. https://doi.org/10.3390/app122111145
Chicago/Turabian StyleSierra, Oscar M., Jordi Payá, José Monzó, María V. Borrachero, Lourdes Soriano, and Javier Quiñonez. 2022. "Characterization and Reactivity of Natural Pozzolans from Guatemala" Applied Sciences 12, no. 21: 11145. https://doi.org/10.3390/app122111145
APA StyleSierra, O. M., Payá, J., Monzó, J., Borrachero, M. V., Soriano, L., & Quiñonez, J. (2022). Characterization and Reactivity of Natural Pozzolans from Guatemala. Applied Sciences, 12(21), 11145. https://doi.org/10.3390/app122111145