Finding Subsampling Index Sets for Kronecker Product of Unitary Matrices for Incoherent Tight Frames
Abstract
:1. Introduction
2. Background
2.1. Frame Fundamentals
- 1.
- ,
- 2.
- , for where .
2.2. Mutual Coherence
2.3. Kronecker Product
2.4. Other Notations
3. Problem Formulation for Kronecker-Product-Based Frames
3.1. Problem Formulation
3.2. Kronecker Product with Unitary Matrix
3.3. Kronecker Product with Special Unitary Matrix
3.4. Computational Complexity of Objective Function
4. Algorithm for Solving Optimization Problem
5. Results
5.1. Mutual Coherence
5.2. CS Recovery Performance
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Strohmer, T.; Heath, R.W., Jr. Grassmannian Frames with Applications to Coding and Communication. Appl. Comput. Harmon. Anal. 2003, 14, 257–275. [Google Scholar] [CrossRef] [Green Version]
- Kovačević, J.; Chebira, A. An Introduction to Frames. Found. Trends Signal Process. 2008, 2, 1–94. [Google Scholar] [CrossRef]
- Knill, E. Quantum Computing with Realistically Noisy Devices. Nature 2005, 6434, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Strohmer, T. Approximation of Dual Gabor Frames, Window Decay, and Wireless Communications. Appl. Comput. Harmon. Anal. 2001, 11, 243–262. [Google Scholar] [CrossRef] [Green Version]
- Leonardi, N.; Van De Ville, D. Tight Wavelet Frames on Multislice Graphs. IEEE Trans. Signal Process. 2013, 61, 3357–3367. [Google Scholar] [CrossRef] [Green Version]
- Eldar, Y.C.; Bolcskei, H. Geometrically Uniform Frames. IEEE Trans. Inf. Theory 2003, 49, 993–1006. [Google Scholar] [CrossRef]
- Zörlein, H.M.B. Coherence Optimization and Best Complex Antipodal Spherical Codes. IEEE Trans. Signal Process. 2015, 63, 6606–6615. [Google Scholar] [CrossRef] [Green Version]
- Simon, F.; Holger, R. A Mathematical Introduction to Compressive Sensing; Birkhäuser: New York, NY, USA, 2013. [Google Scholar]
- Bajwa, W.U.; Pezeshki, A. Finite Frames for Sparse Signal Processing. In Finite Frames: Theory and Applications; Casazza, P.G., Kutyniok, G., Eds.; Birkhäuser Boston: Boston, MA, USA, 2013; pp. 303–335. [Google Scholar] [CrossRef]
- Entezari, R.; Rashidi, A. Incoherent Waveform Design for Compressed Sensing Radar Based on Pulse-Train Scenario. IET Commun. 2018, 12, 2132–2136. [Google Scholar] [CrossRef]
- Massey, J.L.; Mittelholzer, T. Welch’s Bound and Sequence Sets for Code-Division Multiple-Access Systems. In Sequences II; Springer: New York, NY, USA, 1993; pp. 63–78. [Google Scholar]
- Bangun, A.; Behboodi, A.; Mathar, R. Tight Bounds on the Mutual Coherence of Sensing Matrices for Wigner D-functions on Regular Grids. Sampl. Theory Signal Process. Data Anal. 2021, 19, 1–39. [Google Scholar] [CrossRef]
- Welch, L. Lower Bounds on the Maximum Cross Correlation of Signals (Corresp.). IEEE Trans. Inf. Theory 1974, 20, 397–399. [Google Scholar] [CrossRef]
- Strohmer, T. A Note on Equiangular Tight Frames. Linear Algebra Appl. 2008, 429, 326–330. [Google Scholar] [CrossRef] [Green Version]
- Sustik, M.A.; Tropp, J.A.; Dhillon, I.S.; Heath, R.W., Jr. On the Existence of Equiangular Tight Frames. Linear Algebra Appl. 2007, 426, 619–635. [Google Scholar] [CrossRef] [Green Version]
- Matthew, F.; Dustin, G.M.; Janet, C.T. Steiner Equiangular Tight Frames. Linear Algebra Appl. 2012, 436, 1014–1027. [Google Scholar] [CrossRef] [Green Version]
- Matthew, F.; John, J.; Dustin, G.M.; Jesse, P. Tremain Equiangular Tight Frames. J. Comb. Theory Ser. A 2018, 153, 54–66. [Google Scholar]
- Ding, C. Complex Codebooks From Combinatorial Designs. IEEE Trans. Inf. Theory 2006, 52, 4229–4235. [Google Scholar] [CrossRef]
- Ding, C.; Feng, T. Codebooks from Almost Difference Sets. Des. Codes Cryptogr. 2008, 46, 113–126. [Google Scholar] [CrossRef]
- Zhang, A.; Feng, K. Two Classes of Codebooks Nearly Meeting the Welch Bound. IEEE Trans. Inf. Theory 2012, 58, 2507–2511. [Google Scholar] [CrossRef]
- Yu, N.Y. A Construction of Codebooks Associated with Binary Sequences. IEEE Trans. Inf. Theory 2012, 58, 5522–5533. [Google Scholar] [CrossRef]
- Hong, S.; Park, H.; No, J.S.; Helleseth, T.; Kim, Y.S. Near-Optimal Partial Hadamard Codebook Construction Using Binary Sequences Obtained From Quadratic Residue Mapping. IEEE Trans. Inf. Theory 2014, 60, 3698–3705. [Google Scholar] [CrossRef]
- Hu, H.; Wu, J. New Constructions of Codebooks Nearly Meeting the Welch Bound with Equality. IEEE Trans. Inf. Theory 2014, 60, 1348–1355. [Google Scholar] [CrossRef]
- Li, C.; Yue, Q.; Huang, Y. Two Families of Nearly Optimal Codebooks. Des. Codes Cryptogr. 2015, 75, 43–57. [Google Scholar] [CrossRef]
- Han, L.; Sun, S.; Yan, Y.; Wang, Q. A New Construction of Codebooks Meeting the Levenshtein Bound. IEEE Access 2020, 8, 77598–77603. [Google Scholar] [CrossRef]
- Tropp, J.A.; Dhillon, I.S.; Heath, R.W., Jr.; Strohmer, T. Designing Structured Tight Frames via an Alternating Projection Method. IEEE Trans. Inf. Theory 2005, 51, 188–209. [Google Scholar] [CrossRef] [Green Version]
- Elad, M. Optimized Projections for Compressed Sensing. IEEE Trans. Signal Process. 2007, 55, 5695–5702. [Google Scholar] [CrossRef]
- Tsiligianni, E.V.; Kondi, L.P.; Katsaggelos, A.K. Construction of Incoherent Unit Norm Tight Frames with Application to Compressed Sensing. IEEE Trans. Inf. Theory 2014, 60, 2319–2330. [Google Scholar] [CrossRef]
- Meenakshi; Srirangarajan, S. Incoherent and Robust Projection Matrix Design Based on Equiangular Tight Frame. IEEE Access 2021, 9, 131462–131475. [Google Scholar] [CrossRef]
- Rusu, C.; González-Prelcic, N. Designing Incoherent Frames Through Convex Techniques for Optimized Compressed Sensing. IEEE Trans. Signal Process. 2016, 64, 2334–2344. [Google Scholar] [CrossRef]
- Entezari, R.; Rashidi, A. Measurement Matrix Optimization Based on Incoherent Unit Norm Tight Frame. Int. J. Electron. Commun. 2017, 82, 321–326. [Google Scholar] [CrossRef]
- Lu, C.; Li, H.; Lin, Z. Optimized Projections for Compressed Sensing via Direct Mutual Coherence Minimization. Signal Process. 2018, 151, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Hong, T.; Zhu, Z. An Efficient Method for Robust Projection Matrix Design. Signal Process. 2018, 143, 200–210. [Google Scholar] [CrossRef]
- Dumitrescu, B. Designing Incoherent Frames with Only Matrix–Vector Multiplications. IEEE Signal Process. Lett. 2017, 24, 1265–1269. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, L.; Chen, Y. Kronecker Product-Based Codebook Design and Optimisation for Correlated 3D Channels. Trans. Emerg. Tel. Tech. 2015, 26, 1225–1234. [Google Scholar] [CrossRef]
- Sadeghi, M.; Babaie-Zadeh, M. Incoherent Unit-Norm Frame Design via an Alternating Minimization Penalty Method. IEEE Signal Process. Lett. 2017, 24, 32–36. [Google Scholar] [CrossRef]
- Jyothi, R.; Babu, P.; Stoica, P. Design of High-Dimensional Grassmannian Frames via Block Minorization Maximization. IEEE Commun. Lett. 2021, 25, 3624–3628. [Google Scholar] [CrossRef]
- Hunter, D.R.; Lange, K. Quantile Regression via an MM Algorithm. J. Comput. Graph. Stat. 2000, 9, 60–77. [Google Scholar]
- Mortada, H.; Bosse, J.; Rabaste, O. Dictionary Optimization for Greedy Recovery in Modulated Wideband Converter Based Sub-Nyquist Sensing. Signal Process. 2022, 199, 108607. [Google Scholar] [CrossRef]
- Nocedal, J.; Wright, S.J. Numerical Optimization; Springer: New York, NY, USA, 1999. [Google Scholar]
- Rusu, C.; González-Prelcic, N.; Heath, R.W., Jr. Algorithms for the Construction of Incoherent Frames Under Various Design Constraints. Signal Process. 2018, 152, 363–372. [Google Scholar] [CrossRef] [Green Version]
- Candès, E.J.; Wakin, M.; Boyd, S. Enhancing Sparsity by Reweighted l1 Minimization. J. Fourier Anal. Appl. 2008, 14, 877–905. [Google Scholar] [CrossRef]
- Sylvester, J.J. LX. Thoughts on Inverse Orthogonal Matrices, Simultaneous Signsuccessions, and Tessellated Pavements in Two or More Colours, with Applications to Newton’s Rule, Ornamental Tile-Work, and The Theory of Numbers. Philos. Mag. 1867, 34, 461–475. [Google Scholar] [CrossRef]
- Waldron, F.D.S. An Introduction to Finite Tight Frames; Birkhäuser: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Loan, C.F. The Ubiquitous Kronecker Product. J. Comput. Appl. Math. 2000, 123, 85–100. [Google Scholar] [CrossRef]
- Hedayat, A.; Wallis, W.D. Hadamard Matrices and Their Applications. Ann. Stat. 1978, 1184–1238. [Google Scholar] [CrossRef]
- Mullen, G.L.; Panario, D.; Shparlinski, I.E. Finite Fields and Applications; American Mathematical Society: Providence, RI, USA, 2008; Volume 461. [Google Scholar]
- Michael, G.; Stephen, B. CVX: Matlab Software for Disciplined Convex Programming, Version 2.1. 2014. Available online: http://cvxr.com/cvx (accessed on 14 March 2022).
- Tropp, J.A.; Gilbert, A.C. Signal Recovery from Random Measurements via Orthogonal Matching Pursuit. IEEE Trans. Inf. Theory 2007, 53, 4655–4666. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, J.; Yu, N.Y. Finding Subsampling Index Sets for Kronecker Product of Unitary Matrices for Incoherent Tight Frames. Appl. Sci. 2022, 12, 11055. https://doi.org/10.3390/app122111055
Kwon J, Yu NY. Finding Subsampling Index Sets for Kronecker Product of Unitary Matrices for Incoherent Tight Frames. Applied Sciences. 2022; 12(21):11055. https://doi.org/10.3390/app122111055
Chicago/Turabian StyleKwon, Jooeun, and Nam Yul Yu. 2022. "Finding Subsampling Index Sets for Kronecker Product of Unitary Matrices for Incoherent Tight Frames" Applied Sciences 12, no. 21: 11055. https://doi.org/10.3390/app122111055
APA StyleKwon, J., & Yu, N. Y. (2022). Finding Subsampling Index Sets for Kronecker Product of Unitary Matrices for Incoherent Tight Frames. Applied Sciences, 12(21), 11055. https://doi.org/10.3390/app122111055